Loading…

Tubular TMEM16A promotes tubulointerstitial fibrosis by suppressing PGC-1α-mediated mitochondrial homeostasis in diabetic kidney disease

Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca 2+ -activated chloride channel, contributes to...

Full description

Saved in:
Bibliographic Details
Published in:Cellular and molecular life sciences : CMLS 2023-12, Vol.80 (12), p.347-347, Article 347
Main Authors: Ji, Jia-Ling, Li, Jun-Ying, Liang, Jian-Xiang, Zhou, Yan, Liu, Cong-Cong, Zhang, Yao, Zhang, Ai-Qing, Liu, Hong, Ma, Rui-Xia, Li, Zuo-Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c464t-afe4db84137e1668cd0447431eedd30c281406fd3e65ee1255e6ad33818c5b6b3
cites cdi_FETCH-LOGICAL-c464t-afe4db84137e1668cd0447431eedd30c281406fd3e65ee1255e6ad33818c5b6b3
container_end_page 347
container_issue 12
container_start_page 347
container_title Cellular and molecular life sciences : CMLS
container_volume 80
creator Ji, Jia-Ling
Li, Jun-Ying
Liang, Jian-Xiang
Zhou, Yan
Liu, Cong-Cong
Zhang, Yao
Zhang, Ai-Qing
Liu, Hong
Ma, Rui-Xia
Li, Zuo-Lin
description Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca 2+ -activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl − , and reducing intracellular Cl − significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.
doi_str_mv 10.1007/s00018-023-05000-6
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11072291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153549394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-afe4db84137e1668cd0447431eedd30c281406fd3e65ee1255e6ad33818c5b6b3</originalsourceid><addsrcrecordid>eNqFks1u1DAQxyMEoqXwAhyQJS5cUvwVxzmhalUKUqtyWCRulhNPdl0SO9gO0j4Cj8OL8Ew43W35OMDJY83vPx7P_IviOcGnBOP6dcQYE1liykpc5bgUD4pjwikuG1yTh4dYSPrpqHgS402mK0nF4-KI1Q1nrCHHxbf13M6DDmh9dX5FxBmagh99gojSkvDWJQgx2WT1gHrbBh9tRO0OxXmaAsRo3QZ9uFiV5Mf3cgRjdQKDRpt8t_XOhEW29SP4mPSitA5lpoVkO_TZGge7fI-gIzwtHvV6iPDscJ4UH9-er1fvysvri_ers8uy44KnUvfATSs5YTUQIWRnMOc1ZwTAGIY7KgnHojcMRAVAaFWB0IYxSWRXtaJlJ8Wbfd1pbnPDHbgU9KCmYEcddsprq_7MOLtVG_9VEYJrShuSK7w6VAj-ywwxqdHGDoZBO_BzVIxUrOINyzP-H0qllJhVuJYZffkXeuPn4PIoFqqu80opyxTdU13eRAzQ3zdOsFpcofauUNkV6tYVSmTRi9-_fC-5s0EG2B6IOeU2EH69_Y-yPwFul8XE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887707123</pqid></control><display><type>article</type><title>Tubular TMEM16A promotes tubulointerstitial fibrosis by suppressing PGC-1α-mediated mitochondrial homeostasis in diabetic kidney disease</title><source>Springer Nature</source><source>PubMed Central</source><creator>Ji, Jia-Ling ; Li, Jun-Ying ; Liang, Jian-Xiang ; Zhou, Yan ; Liu, Cong-Cong ; Zhang, Yao ; Zhang, Ai-Qing ; Liu, Hong ; Ma, Rui-Xia ; Li, Zuo-Lin</creator><creatorcontrib>Ji, Jia-Ling ; Li, Jun-Ying ; Liang, Jian-Xiang ; Zhou, Yan ; Liu, Cong-Cong ; Zhang, Yao ; Zhang, Ai-Qing ; Liu, Hong ; Ma, Rui-Xia ; Li, Zuo-Lin</creatorcontrib><description>Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca 2+ -activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl − , and reducing intracellular Cl − significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-023-05000-6</identifier><identifier>PMID: 37943391</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animal models ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Calcium chloride ; Calcium ions ; Cell Biology ; Channel gating ; Chloride ions ; Diabetes ; Diabetes Mellitus ; Diabetic Nephropathies - genetics ; Diabetic nephropathy ; Fibrosis ; Homeostasis ; Intracellular ; Ion channels ; Kidney diseases ; Kidneys ; Life Sciences ; Mice ; Mitochondria ; Molecular modelling ; Original ; Original Article ; therapeutics</subject><ispartof>Cellular and molecular life sciences : CMLS, 2023-12, Vol.80 (12), p.347-347, Article 347</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-afe4db84137e1668cd0447431eedd30c281406fd3e65ee1255e6ad33818c5b6b3</citedby><cites>FETCH-LOGICAL-c464t-afe4db84137e1668cd0447431eedd30c281406fd3e65ee1255e6ad33818c5b6b3</cites><orcidid>0000-0002-6694-8406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11072291/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11072291/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27900,27901,53765,53767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37943391$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Jia-Ling</creatorcontrib><creatorcontrib>Li, Jun-Ying</creatorcontrib><creatorcontrib>Liang, Jian-Xiang</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Liu, Cong-Cong</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Zhang, Ai-Qing</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Ma, Rui-Xia</creatorcontrib><creatorcontrib>Li, Zuo-Lin</creatorcontrib><title>Tubular TMEM16A promotes tubulointerstitial fibrosis by suppressing PGC-1α-mediated mitochondrial homeostasis in diabetic kidney disease</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca 2+ -activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl − , and reducing intracellular Cl − significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.</description><subject>Animal models</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcium chloride</subject><subject>Calcium ions</subject><subject>Cell Biology</subject><subject>Channel gating</subject><subject>Chloride ions</subject><subject>Diabetes</subject><subject>Diabetes Mellitus</subject><subject>Diabetic Nephropathies - genetics</subject><subject>Diabetic nephropathy</subject><subject>Fibrosis</subject><subject>Homeostasis</subject><subject>Intracellular</subject><subject>Ion channels</subject><subject>Kidney diseases</subject><subject>Kidneys</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Molecular modelling</subject><subject>Original</subject><subject>Original Article</subject><subject>therapeutics</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFks1u1DAQxyMEoqXwAhyQJS5cUvwVxzmhalUKUqtyWCRulhNPdl0SO9gO0j4Cj8OL8Ew43W35OMDJY83vPx7P_IviOcGnBOP6dcQYE1liykpc5bgUD4pjwikuG1yTh4dYSPrpqHgS402mK0nF4-KI1Q1nrCHHxbf13M6DDmh9dX5FxBmagh99gojSkvDWJQgx2WT1gHrbBh9tRO0OxXmaAsRo3QZ9uFiV5Mf3cgRjdQKDRpt8t_XOhEW29SP4mPSitA5lpoVkO_TZGge7fI-gIzwtHvV6iPDscJ4UH9-er1fvysvri_ers8uy44KnUvfATSs5YTUQIWRnMOc1ZwTAGIY7KgnHojcMRAVAaFWB0IYxSWRXtaJlJ8Wbfd1pbnPDHbgU9KCmYEcddsprq_7MOLtVG_9VEYJrShuSK7w6VAj-ywwxqdHGDoZBO_BzVIxUrOINyzP-H0qllJhVuJYZffkXeuPn4PIoFqqu80opyxTdU13eRAzQ3zdOsFpcofauUNkV6tYVSmTRi9-_fC-5s0EG2B6IOeU2EH69_Y-yPwFul8XE</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ji, Jia-Ling</creator><creator>Li, Jun-Ying</creator><creator>Liang, Jian-Xiang</creator><creator>Zhou, Yan</creator><creator>Liu, Cong-Cong</creator><creator>Zhang, Yao</creator><creator>Zhang, Ai-Qing</creator><creator>Liu, Hong</creator><creator>Ma, Rui-Xia</creator><creator>Li, Zuo-Lin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6694-8406</orcidid></search><sort><creationdate>20231201</creationdate><title>Tubular TMEM16A promotes tubulointerstitial fibrosis by suppressing PGC-1α-mediated mitochondrial homeostasis in diabetic kidney disease</title><author>Ji, Jia-Ling ; Li, Jun-Ying ; Liang, Jian-Xiang ; Zhou, Yan ; Liu, Cong-Cong ; Zhang, Yao ; Zhang, Ai-Qing ; Liu, Hong ; Ma, Rui-Xia ; Li, Zuo-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-afe4db84137e1668cd0447431eedd30c281406fd3e65ee1255e6ad33818c5b6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcium chloride</topic><topic>Calcium ions</topic><topic>Cell Biology</topic><topic>Channel gating</topic><topic>Chloride ions</topic><topic>Diabetes</topic><topic>Diabetes Mellitus</topic><topic>Diabetic Nephropathies - genetics</topic><topic>Diabetic nephropathy</topic><topic>Fibrosis</topic><topic>Homeostasis</topic><topic>Intracellular</topic><topic>Ion channels</topic><topic>Kidney diseases</topic><topic>Kidneys</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Molecular modelling</topic><topic>Original</topic><topic>Original Article</topic><topic>therapeutics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Jia-Ling</creatorcontrib><creatorcontrib>Li, Jun-Ying</creatorcontrib><creatorcontrib>Liang, Jian-Xiang</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Liu, Cong-Cong</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Zhang, Ai-Qing</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Ma, Rui-Xia</creatorcontrib><creatorcontrib>Li, Zuo-Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Jia-Ling</au><au>Li, Jun-Ying</au><au>Liang, Jian-Xiang</au><au>Zhou, Yan</au><au>Liu, Cong-Cong</au><au>Zhang, Yao</au><au>Zhang, Ai-Qing</au><au>Liu, Hong</au><au>Ma, Rui-Xia</au><au>Li, Zuo-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tubular TMEM16A promotes tubulointerstitial fibrosis by suppressing PGC-1α-mediated mitochondrial homeostasis in diabetic kidney disease</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>80</volume><issue>12</issue><spage>347</spage><epage>347</epage><pages>347-347</pages><artnum>347</artnum><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca 2+ -activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl − , and reducing intracellular Cl − significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>37943391</pmid><doi>10.1007/s00018-023-05000-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6694-8406</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2023-12, Vol.80 (12), p.347-347, Article 347
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11072291
source Springer Nature; PubMed Central
subjects Animal models
Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Calcium chloride
Calcium ions
Cell Biology
Channel gating
Chloride ions
Diabetes
Diabetes Mellitus
Diabetic Nephropathies - genetics
Diabetic nephropathy
Fibrosis
Homeostasis
Intracellular
Ion channels
Kidney diseases
Kidneys
Life Sciences
Mice
Mitochondria
Molecular modelling
Original
Original Article
therapeutics
title Tubular TMEM16A promotes tubulointerstitial fibrosis by suppressing PGC-1α-mediated mitochondrial homeostasis in diabetic kidney disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T23%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tubular%20TMEM16A%20promotes%20tubulointerstitial%20fibrosis%20by%20suppressing%20PGC-1%CE%B1-mediated%20mitochondrial%20homeostasis%20in%20diabetic%20kidney%20disease&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Ji,%20Jia-Ling&rft.date=2023-12-01&rft.volume=80&rft.issue=12&rft.spage=347&rft.epage=347&rft.pages=347-347&rft.artnum=347&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-023-05000-6&rft_dat=%3Cproquest_pubme%3E3153549394%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-afe4db84137e1668cd0447431eedd30c281406fd3e65ee1255e6ad33818c5b6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2887707123&rft_id=info:pmid/37943391&rfr_iscdi=true