Loading…
Modified Lichong decoction intervenes in colorectal cancer by modulating the intestinal flora and the Wnt/β-catenin signaling pathway
Background The pathogenesis and treatment of colorectal cancer (CRC) continue to be areas of ongoing research, especially the benefits of traditional Chinese medicine (TCM) in slowing the progression of CRC. This study was conducted to investigate the effectiveness and mechanism of action of modifie...
Saved in:
Published in: | Journal of cancer research and clinical oncology 2024-05, Vol.150 (5), p.234-234, Article 234 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
The pathogenesis and treatment of colorectal cancer (CRC) continue to be areas of ongoing research, especially the benefits of traditional Chinese medicine (TCM) in slowing the progression of CRC. This study was conducted to investigate the effectiveness and mechanism of action of modified Lichong decoction (MLCD) in inhibiting CRC progression.
Methods
We established CRC animal models using azoxymethane/dextran sodium sulfate (AOM/DSS) and administered high, medium, or low doses of MLCD or mesalazine (MS) for 9 weeks to observe MLCD alleviation of CRC. The optimal MLCD dose group was then subjected to metagenomic and RNA sequencing (RNA-seq) to explore the differentially abundant flora and genes in the control, model and MLCD groups. Finally, the mechanism of action was verified using WB, qRT‒PCR, immunohistochemistry and TUNEL staining.
Results
MLCD inhibited the progression of CRC, and the optimal effect was observed at high doses. MLCD regulated the structure and function of the intestinal flora by decreasing the abundance of harmful bacteria and increasing that of beneficial bacteria. The differentially expressed genes were mainly associated with the Wnt/β-catenin pathway and the cell cycle. Molecular biology analysis indicated that MLCD suppressed the Wnt/β-catenin pathway and the epithelial–mesenchymal transition (EMT), inhibited abnormal cell proliferation and promoted intestinal epithelial cell apoptosis.
Conclusion
MLCD mitigated the abnormal growth of intestinal epithelial cells and promoted apoptosis, thereby inhibiting the progression of CRC. This inhibition was accomplished by modifying the intestinal microbiota and disrupting the Wnt/β-catenin pathway and the EMT. Therefore, MLCD could serve as a potential component of TCM prescriptions for CRC treatment. |
---|---|
ISSN: | 1432-1335 0171-5216 1432-1335 |
DOI: | 10.1007/s00432-024-05763-w |