Loading…
COSMIC: Molecular Conformation Space Modeling in Internal Coordinates with an Adversarial Framework
The fast and accurate conformation space modeling is an essential part of computational approaches for solving ligand and structure-based drug discovery problems. Recent state-of-the-art diffusion models for molecular conformation generation show promising distribution coverage and physical plausibi...
Saved in:
Published in: | Journal of chemical information and modeling 2024-05, Vol.64 (9), p.3610-3620 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a415t-851184257749a742cc704052411991bc97ad67b077ebc862f5729a229cffe2153 |
container_end_page | 3620 |
container_issue | 9 |
container_start_page | 3610 |
container_title | Journal of chemical information and modeling |
container_volume | 64 |
creator | Kuznetsov, Maksim Ryabov, Fedor Schutski, Roman Shayakhmetov, Rim Lin, Yen-Chu Aliper, Alex Polykovskiy, Daniil |
description | The fast and accurate conformation space modeling is an essential part of computational approaches for solving ligand and structure-based drug discovery problems. Recent state-of-the-art diffusion models for molecular conformation generation show promising distribution coverage and physical plausibility metrics but suffer from a slow sampling procedure. We propose a novel adversarial generative framework, COSMIC, that shows comparable generative performance but provides a time-efficient sampling and training procedure. Given a molecular graph and random noise, the generator produces a conformation in two stages. First, it constructs a conformation in a rotation and translation invariant representationinternal coordinates. In the second step, the model predicts the distances between neighboring atoms and performs a few fast optimization steps to refine the initial conformation. The proposed model considers conformation energy, achieving comparable space coverage, and diversity metrics results. |
doi_str_mv | 10.1021/acs.jcim.3c00989 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11094738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055537082</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-851184257749a742cc704052411991bc97ad67b077ebc862f5729a229cffe2153</originalsourceid><addsrcrecordid>eNp1kUtvEzEUhS0Eog-6Z4VGYtMFCX57zAZVIwqRWnVRkLqzbjye1mHGDvZMq_77OiSpAImVr3S-c2zfg9BbgucEU_IRbJ6vrB_mzGKsa_0CHRLB9UxLfPNyPwstD9BRziuMGdOSvkYHrJayVoIdIttcXV8umk_VZeydnXpIVRNDF9MAo4-hul6DdUVsXe_DbeVDtQijSwH6wsXU-gCjy9WDH-8qCNVZe-9ShuSLfp5gcA8x_XyDXnXQZ3eyO4_Rj_Mv35tvs4urr4vm7GIGnIhxVgtCak6FUlyD4tRahTkWlBOiNVlaraCVaomVcktbS9oJRTVQqm3XOUoEO0aft7nraTm41rowJujNOvkB0qOJ4M3fSvB35jbeG0Kw5orVJeF0l5Dir8nl0Qw-W9f3EFycsmGYK82pZLKg7_9BV3Ha7GVDCSGYwjUtFN5SNsWck-ueX0Ow2VRoSoVmU6HZVVgs7_78xbNh31kBPmyB39b9pf_NewJ0E6eM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055537082</pqid></control><display><type>article</type><title>COSMIC: Molecular Conformation Space Modeling in Internal Coordinates with an Adversarial Framework</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kuznetsov, Maksim ; Ryabov, Fedor ; Schutski, Roman ; Shayakhmetov, Rim ; Lin, Yen-Chu ; Aliper, Alex ; Polykovskiy, Daniil</creator><creatorcontrib>Kuznetsov, Maksim ; Ryabov, Fedor ; Schutski, Roman ; Shayakhmetov, Rim ; Lin, Yen-Chu ; Aliper, Alex ; Polykovskiy, Daniil</creatorcontrib><description>The fast and accurate conformation space modeling is an essential part of computational approaches for solving ligand and structure-based drug discovery problems. Recent state-of-the-art diffusion models for molecular conformation generation show promising distribution coverage and physical plausibility metrics but suffer from a slow sampling procedure. We propose a novel adversarial generative framework, COSMIC, that shows comparable generative performance but provides a time-efficient sampling and training procedure. Given a molecular graph and random noise, the generator produces a conformation in two stages. First, it constructs a conformation in a rotation and translation invariant representationinternal coordinates. In the second step, the model predicts the distances between neighboring atoms and performs a few fast optimization steps to refine the initial conformation. The proposed model considers conformation energy, achieving comparable space coverage, and diversity metrics results.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c00989</identifier><identifier>PMID: 38668753</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Drug Discovery ; Ligands ; Machine Learning and Deep Learning ; Models, Molecular ; Molecular Conformation ; Random noise ; Sampling</subject><ispartof>Journal of chemical information and modeling, 2024-05, Vol.64 (9), p.3610-3620</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society May 13, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a415t-851184257749a742cc704052411991bc97ad67b077ebc862f5729a229cffe2153</cites><orcidid>0000-0002-8933-6007 ; 0000-0003-0541-1055 ; 0000-0003-1654-3336 ; 0000-0002-4363-0710 ; 0000-0001-8446-7983 ; 0000-0001-5425-9964 ; 0000-0002-0899-8368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38668753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuznetsov, Maksim</creatorcontrib><creatorcontrib>Ryabov, Fedor</creatorcontrib><creatorcontrib>Schutski, Roman</creatorcontrib><creatorcontrib>Shayakhmetov, Rim</creatorcontrib><creatorcontrib>Lin, Yen-Chu</creatorcontrib><creatorcontrib>Aliper, Alex</creatorcontrib><creatorcontrib>Polykovskiy, Daniil</creatorcontrib><title>COSMIC: Molecular Conformation Space Modeling in Internal Coordinates with an Adversarial Framework</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The fast and accurate conformation space modeling is an essential part of computational approaches for solving ligand and structure-based drug discovery problems. Recent state-of-the-art diffusion models for molecular conformation generation show promising distribution coverage and physical plausibility metrics but suffer from a slow sampling procedure. We propose a novel adversarial generative framework, COSMIC, that shows comparable generative performance but provides a time-efficient sampling and training procedure. Given a molecular graph and random noise, the generator produces a conformation in two stages. First, it constructs a conformation in a rotation and translation invariant representationinternal coordinates. In the second step, the model predicts the distances between neighboring atoms and performs a few fast optimization steps to refine the initial conformation. The proposed model considers conformation energy, achieving comparable space coverage, and diversity metrics results.</description><subject>Algorithms</subject><subject>Drug Discovery</subject><subject>Ligands</subject><subject>Machine Learning and Deep Learning</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Random noise</subject><subject>Sampling</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kUtvEzEUhS0Eog-6Z4VGYtMFCX57zAZVIwqRWnVRkLqzbjye1mHGDvZMq_77OiSpAImVr3S-c2zfg9BbgucEU_IRbJ6vrB_mzGKsa_0CHRLB9UxLfPNyPwstD9BRziuMGdOSvkYHrJayVoIdIttcXV8umk_VZeydnXpIVRNDF9MAo4-hul6DdUVsXe_DbeVDtQijSwH6wsXU-gCjy9WDH-8qCNVZe-9ShuSLfp5gcA8x_XyDXnXQZ3eyO4_Rj_Mv35tvs4urr4vm7GIGnIhxVgtCak6FUlyD4tRahTkWlBOiNVlaraCVaomVcktbS9oJRTVQqm3XOUoEO0aft7nraTm41rowJujNOvkB0qOJ4M3fSvB35jbeG0Kw5orVJeF0l5Dir8nl0Qw-W9f3EFycsmGYK82pZLKg7_9BV3Ha7GVDCSGYwjUtFN5SNsWck-ueX0Ow2VRoSoVmU6HZVVgs7_78xbNh31kBPmyB39b9pf_NewJ0E6eM</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Kuznetsov, Maksim</creator><creator>Ryabov, Fedor</creator><creator>Schutski, Roman</creator><creator>Shayakhmetov, Rim</creator><creator>Lin, Yen-Chu</creator><creator>Aliper, Alex</creator><creator>Polykovskiy, Daniil</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8933-6007</orcidid><orcidid>https://orcid.org/0000-0003-0541-1055</orcidid><orcidid>https://orcid.org/0000-0003-1654-3336</orcidid><orcidid>https://orcid.org/0000-0002-4363-0710</orcidid><orcidid>https://orcid.org/0000-0001-8446-7983</orcidid><orcidid>https://orcid.org/0000-0001-5425-9964</orcidid><orcidid>https://orcid.org/0000-0002-0899-8368</orcidid></search><sort><creationdate>20240513</creationdate><title>COSMIC: Molecular Conformation Space Modeling in Internal Coordinates with an Adversarial Framework</title><author>Kuznetsov, Maksim ; Ryabov, Fedor ; Schutski, Roman ; Shayakhmetov, Rim ; Lin, Yen-Chu ; Aliper, Alex ; Polykovskiy, Daniil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-851184257749a742cc704052411991bc97ad67b077ebc862f5729a229cffe2153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Drug Discovery</topic><topic>Ligands</topic><topic>Machine Learning and Deep Learning</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Random noise</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuznetsov, Maksim</creatorcontrib><creatorcontrib>Ryabov, Fedor</creatorcontrib><creatorcontrib>Schutski, Roman</creatorcontrib><creatorcontrib>Shayakhmetov, Rim</creatorcontrib><creatorcontrib>Lin, Yen-Chu</creatorcontrib><creatorcontrib>Aliper, Alex</creatorcontrib><creatorcontrib>Polykovskiy, Daniil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuznetsov, Maksim</au><au>Ryabov, Fedor</au><au>Schutski, Roman</au><au>Shayakhmetov, Rim</au><au>Lin, Yen-Chu</au><au>Aliper, Alex</au><au>Polykovskiy, Daniil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COSMIC: Molecular Conformation Space Modeling in Internal Coordinates with an Adversarial Framework</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-05-13</date><risdate>2024</risdate><volume>64</volume><issue>9</issue><spage>3610</spage><epage>3620</epage><pages>3610-3620</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The fast and accurate conformation space modeling is an essential part of computational approaches for solving ligand and structure-based drug discovery problems. Recent state-of-the-art diffusion models for molecular conformation generation show promising distribution coverage and physical plausibility metrics but suffer from a slow sampling procedure. We propose a novel adversarial generative framework, COSMIC, that shows comparable generative performance but provides a time-efficient sampling and training procedure. Given a molecular graph and random noise, the generator produces a conformation in two stages. First, it constructs a conformation in a rotation and translation invariant representationinternal coordinates. In the second step, the model predicts the distances between neighboring atoms and performs a few fast optimization steps to refine the initial conformation. The proposed model considers conformation energy, achieving comparable space coverage, and diversity metrics results.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38668753</pmid><doi>10.1021/acs.jcim.3c00989</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8933-6007</orcidid><orcidid>https://orcid.org/0000-0003-0541-1055</orcidid><orcidid>https://orcid.org/0000-0003-1654-3336</orcidid><orcidid>https://orcid.org/0000-0002-4363-0710</orcidid><orcidid>https://orcid.org/0000-0001-8446-7983</orcidid><orcidid>https://orcid.org/0000-0001-5425-9964</orcidid><orcidid>https://orcid.org/0000-0002-0899-8368</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2024-05, Vol.64 (9), p.3610-3620 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11094738 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Algorithms Drug Discovery Ligands Machine Learning and Deep Learning Models, Molecular Molecular Conformation Random noise Sampling |
title | COSMIC: Molecular Conformation Space Modeling in Internal Coordinates with an Adversarial Framework |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COSMIC:%20Molecular%20Conformation%20Space%20Modeling%20in%20Internal%20Coordinates%20with%20an%20Adversarial%20Framework&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Kuznetsov,%20Maksim&rft.date=2024-05-13&rft.volume=64&rft.issue=9&rft.spage=3610&rft.epage=3620&rft.pages=3610-3620&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c00989&rft_dat=%3Cproquest_pubme%3E3055537082%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a415t-851184257749a742cc704052411991bc97ad67b077ebc862f5729a229cffe2153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055537082&rft_id=info:pmid/38668753&rfr_iscdi=true |