Loading…

Short-term exposure to air pollution and infant mortality: A systematic review and meta-analysis

Infant mortality is a widely reported indicator of population health and a leading public health concern. In this systematic review and meta-analysis, we review the available literature for epidemiologic evidence of the association between short-term air pollution exposure and infant mortality. Rele...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2023-11, Vol.898, p.165522-165522, Article 165522
Main Authors: Luben, Thomas J., Wilkie, Adrien A., Krajewski, Alison K., Njie, Fanny, Park, Kevin, Zelasky, Sarah, Rappazzo, Kristen M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Infant mortality is a widely reported indicator of population health and a leading public health concern. In this systematic review and meta-analysis, we review the available literature for epidemiologic evidence of the association between short-term air pollution exposure and infant mortality. Relevant publications were identified through PubMed and Web of Science databases using comprehensive search terms and screened using predefined inclusion/exclusion criteria. We extracted data from included studies and applied a systematic rubric for evaluating study quality across domains including participant selection, outcome, exposure, confounding, analysis, selective reporting, sensitivity, and overall quality. We performed meta-analyses, using both fixed and random-effect methods, and estimated pooled odds ratios (ORs) and 95 % confidence intervals (95%CI) for pollutants (nitrogen dioxide (NO2), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), ozone (O3), carbon monoxide (CO)) and infant mortality, neonatal mortality, or postneonatal mortality. Our search returned 549 studies. We excluded 490 studies in the abstract screening phase and an additional 37 studies in the full text screening phase, leaving 22 studies for inclusion. Among these 22 studies, 14 included effect estimates for PM10, 13 for O3, 11 for both NO2 and CO, 8 for SO2, and 3 for PM2.5. We did not calculate a pooled OR for PM2.5 due to the limited number of studies available and demonstrated heterogeneity in the effect estimates. The pooled ORs (95%CI) with the greatest magnitudes were for a 10-ppb increase in SO2 or NO2 concentration in the days before death (1.07 [95%CI: 1.02, 1.12], 1.04 [95%CI: 1.01, 1.08], respectively). The pooled OR for PM10 was 1.02 (95%CI: 1.00, 1.03), and the pooled ORs for CO and O3 were 1.01 (95%CI: 1.00, 1.02) and 0.99 (95%CI: 0.97, 1.01). Increased exposure to SO2, NO2, PM10, or CO is associated with infant mortality across studies. [Display omitted] •Systematic review and meta-analyses of acute air pollution and infant mortality•Positive associations with infant mortality observed for PM10, NO2, SO2, and CO•Negative association with infant mortality observed for O3
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2023.165522