Loading…
Representativeness and face-ism: Gender bias in image search
Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representat...
Saved in:
Published in: | New media & society 2024-06, Vol.26 (6), p.3541-3567 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963 |
---|---|
cites | cdi_FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963 |
container_end_page | 3567 |
container_issue | 6 |
container_start_page | 3541 |
container_title | New media & society |
container_volume | 26 |
creator | Ulloa, Roberto Richter, Ana Carolina Makhortykh, Mykola Urman, Aleksandra Kacperski, Celina Sylwia |
description | Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representativeness and face-ism in search engine image results. We systematically queried four search engines (Google, Bing, Baidu, Yandex) from three locations, using two browsers and in two waves, with gender-neutral (person, intelligent person) and gendered (woman, intelligent woman, man, intelligent man) terminology, accessing the top 100 image results. We employed automatic identification for the individual’s gender expression (female/male) and the calculation of the face-to-body ratio of individuals depicted. We find that, as in other forms of media, search engine images perpetuate biases to the detriment of women, confirming the existence of the representation and face-ism biases. In-depth algorithmic debiasing with a specific focus on gender bias is overdue. |
doi_str_mv | 10.1177/14614448221100699 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11102855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_14614448221100699</sage_id><sourcerecordid>3058638465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk5_gDfSS286mzafIogMncJAEL0OaXq6ZbTpTNqB_96WTVEEr3LIec57Dg9C5ziZYsz5FSYME0JEmmKcJEzKAzQe_mKeYXq4rwdghE5CWCcJZoTLYzTKBOeEUj5GNy-w8RDAtbq1W3AQQqRdEZXaQGxDfR3NwRXgo9zqEFkX2VovIQqgvVmdoqNSVwHO9u8EvT3cv84e48Xz_Gl2t4gNYayNjeCU52lhIBUCG10QXBJJ8xIzWWpiShCC6YyzQnKtEyaozkpOsRSQMyJZNkG3u9xNl9fQ57jW60ptfH-M_1CNtup3x9mVWjZbhXsvqaC0T7jcJ_jmvYPQqtoGA1WlHTRdUFlCBcsEYQOKd6jxTQgeyu89OFGDdvVHez9z8fPA74kvzz0w3QGht6fWTeddL-yfxE9kZ4pk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058638465</pqid></control><display><type>article</type><title>Representativeness and face-ism: Gender bias in image search</title><source>Sage Journals Online</source><creator>Ulloa, Roberto ; Richter, Ana Carolina ; Makhortykh, Mykola ; Urman, Aleksandra ; Kacperski, Celina Sylwia</creator><creatorcontrib>Ulloa, Roberto ; Richter, Ana Carolina ; Makhortykh, Mykola ; Urman, Aleksandra ; Kacperski, Celina Sylwia</creatorcontrib><description>Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representativeness and face-ism in search engine image results. We systematically queried four search engines (Google, Bing, Baidu, Yandex) from three locations, using two browsers and in two waves, with gender-neutral (person, intelligent person) and gendered (woman, intelligent woman, man, intelligent man) terminology, accessing the top 100 image results. We employed automatic identification for the individual’s gender expression (female/male) and the calculation of the face-to-body ratio of individuals depicted. We find that, as in other forms of media, search engine images perpetuate biases to the detriment of women, confirming the existence of the representation and face-ism biases. In-depth algorithmic debiasing with a specific focus on gender bias is overdue.</description><identifier>ISSN: 1461-4448</identifier><identifier>EISSN: 1461-7315</identifier><identifier>DOI: 10.1177/14614448221100699</identifier><identifier>PMID: 38774557</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>New media & society, 2024-06, Vol.26 (6), p.3541-3567</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022.</rights><rights>The Author(s) 2022 2022 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963</citedby><cites>FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963</cites><orcidid>0000-0002-9870-5505 ; 0000-0001-7143-5317 ; 0000-0002-8844-5164 ; 0000-0003-3332-9294 ; 0000-0002-5704-1773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38774557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ulloa, Roberto</creatorcontrib><creatorcontrib>Richter, Ana Carolina</creatorcontrib><creatorcontrib>Makhortykh, Mykola</creatorcontrib><creatorcontrib>Urman, Aleksandra</creatorcontrib><creatorcontrib>Kacperski, Celina Sylwia</creatorcontrib><title>Representativeness and face-ism: Gender bias in image search</title><title>New media & society</title><addtitle>New Media Soc</addtitle><description>Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representativeness and face-ism in search engine image results. We systematically queried four search engines (Google, Bing, Baidu, Yandex) from three locations, using two browsers and in two waves, with gender-neutral (person, intelligent person) and gendered (woman, intelligent woman, man, intelligent man) terminology, accessing the top 100 image results. We employed automatic identification for the individual’s gender expression (female/male) and the calculation of the face-to-body ratio of individuals depicted. We find that, as in other forms of media, search engine images perpetuate biases to the detriment of women, confirming the existence of the representation and face-ism biases. In-depth algorithmic debiasing with a specific focus on gender bias is overdue.</description><issn>1461-4448</issn><issn>1461-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp9kF1LwzAUhoMobk5_gDfSS286mzafIogMncJAEL0OaXq6ZbTpTNqB_96WTVEEr3LIec57Dg9C5ziZYsz5FSYME0JEmmKcJEzKAzQe_mKeYXq4rwdghE5CWCcJZoTLYzTKBOeEUj5GNy-w8RDAtbq1W3AQQqRdEZXaQGxDfR3NwRXgo9zqEFkX2VovIQqgvVmdoqNSVwHO9u8EvT3cv84e48Xz_Gl2t4gNYayNjeCU52lhIBUCG10QXBJJ8xIzWWpiShCC6YyzQnKtEyaozkpOsRSQMyJZNkG3u9xNl9fQ57jW60ptfH-M_1CNtup3x9mVWjZbhXsvqaC0T7jcJ_jmvYPQqtoGA1WlHTRdUFlCBcsEYQOKd6jxTQgeyu89OFGDdvVHez9z8fPA74kvzz0w3QGht6fWTeddL-yfxE9kZ4pk</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ulloa, Roberto</creator><creator>Richter, Ana Carolina</creator><creator>Makhortykh, Mykola</creator><creator>Urman, Aleksandra</creator><creator>Kacperski, Celina Sylwia</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9870-5505</orcidid><orcidid>https://orcid.org/0000-0001-7143-5317</orcidid><orcidid>https://orcid.org/0000-0002-8844-5164</orcidid><orcidid>https://orcid.org/0000-0003-3332-9294</orcidid><orcidid>https://orcid.org/0000-0002-5704-1773</orcidid></search><sort><creationdate>20240601</creationdate><title>Representativeness and face-ism: Gender bias in image search</title><author>Ulloa, Roberto ; Richter, Ana Carolina ; Makhortykh, Mykola ; Urman, Aleksandra ; Kacperski, Celina Sylwia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulloa, Roberto</creatorcontrib><creatorcontrib>Richter, Ana Carolina</creatorcontrib><creatorcontrib>Makhortykh, Mykola</creatorcontrib><creatorcontrib>Urman, Aleksandra</creatorcontrib><creatorcontrib>Kacperski, Celina Sylwia</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>New media & society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulloa, Roberto</au><au>Richter, Ana Carolina</au><au>Makhortykh, Mykola</au><au>Urman, Aleksandra</au><au>Kacperski, Celina Sylwia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representativeness and face-ism: Gender bias in image search</atitle><jtitle>New media & society</jtitle><addtitle>New Media Soc</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>26</volume><issue>6</issue><spage>3541</spage><epage>3567</epage><pages>3541-3567</pages><issn>1461-4448</issn><eissn>1461-7315</eissn><abstract>Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representativeness and face-ism in search engine image results. We systematically queried four search engines (Google, Bing, Baidu, Yandex) from three locations, using two browsers and in two waves, with gender-neutral (person, intelligent person) and gendered (woman, intelligent woman, man, intelligent man) terminology, accessing the top 100 image results. We employed automatic identification for the individual’s gender expression (female/male) and the calculation of the face-to-body ratio of individuals depicted. We find that, as in other forms of media, search engine images perpetuate biases to the detriment of women, confirming the existence of the representation and face-ism biases. In-depth algorithmic debiasing with a specific focus on gender bias is overdue.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>38774557</pmid><doi>10.1177/14614448221100699</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-9870-5505</orcidid><orcidid>https://orcid.org/0000-0001-7143-5317</orcidid><orcidid>https://orcid.org/0000-0002-8844-5164</orcidid><orcidid>https://orcid.org/0000-0003-3332-9294</orcidid><orcidid>https://orcid.org/0000-0002-5704-1773</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1461-4448 |
ispartof | New media & society, 2024-06, Vol.26 (6), p.3541-3567 |
issn | 1461-4448 1461-7315 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11102855 |
source | Sage Journals Online |
title | Representativeness and face-ism: Gender bias in image search |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representativeness%20and%20face-ism:%20Gender%20bias%20in%20image%20search&rft.jtitle=New%20media%20&%20society&rft.au=Ulloa,%20Roberto&rft.date=2024-06-01&rft.volume=26&rft.issue=6&rft.spage=3541&rft.epage=3567&rft.pages=3541-3567&rft.issn=1461-4448&rft.eissn=1461-7315&rft_id=info:doi/10.1177/14614448221100699&rft_dat=%3Cproquest_pubme%3E3058638465%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3058638465&rft_id=info:pmid/38774557&rft_sage_id=10.1177_14614448221100699&rfr_iscdi=true |