Loading…

Representativeness and face-ism: Gender bias in image search

Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representat...

Full description

Saved in:
Bibliographic Details
Published in:New media & society 2024-06, Vol.26 (6), p.3541-3567
Main Authors: Ulloa, Roberto, Richter, Ana Carolina, Makhortykh, Mykola, Urman, Aleksandra, Kacperski, Celina Sylwia
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963
cites cdi_FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963
container_end_page 3567
container_issue 6
container_start_page 3541
container_title New media & society
container_volume 26
creator Ulloa, Roberto
Richter, Ana Carolina
Makhortykh, Mykola
Urman, Aleksandra
Kacperski, Celina Sylwia
description Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representativeness and face-ism in search engine image results. We systematically queried four search engines (Google, Bing, Baidu, Yandex) from three locations, using two browsers and in two waves, with gender-neutral (person, intelligent person) and gendered (woman, intelligent woman, man, intelligent man) terminology, accessing the top 100 image results. We employed automatic identification for the individual’s gender expression (female/male) and the calculation of the face-to-body ratio of individuals depicted. We find that, as in other forms of media, search engine images perpetuate biases to the detriment of women, confirming the existence of the representation and face-ism biases. In-depth algorithmic debiasing with a specific focus on gender bias is overdue.
doi_str_mv 10.1177/14614448221100699
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11102855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_14614448221100699</sage_id><sourcerecordid>3058638465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk5_gDfSS286mzafIogMncJAEL0OaXq6ZbTpTNqB_96WTVEEr3LIec57Dg9C5ziZYsz5FSYME0JEmmKcJEzKAzQe_mKeYXq4rwdghE5CWCcJZoTLYzTKBOeEUj5GNy-w8RDAtbq1W3AQQqRdEZXaQGxDfR3NwRXgo9zqEFkX2VovIQqgvVmdoqNSVwHO9u8EvT3cv84e48Xz_Gl2t4gNYayNjeCU52lhIBUCG10QXBJJ8xIzWWpiShCC6YyzQnKtEyaozkpOsRSQMyJZNkG3u9xNl9fQ57jW60ptfH-M_1CNtup3x9mVWjZbhXsvqaC0T7jcJ_jmvYPQqtoGA1WlHTRdUFlCBcsEYQOKd6jxTQgeyu89OFGDdvVHez9z8fPA74kvzz0w3QGht6fWTeddL-yfxE9kZ4pk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058638465</pqid></control><display><type>article</type><title>Representativeness and face-ism: Gender bias in image search</title><source>Sage Journals Online</source><creator>Ulloa, Roberto ; Richter, Ana Carolina ; Makhortykh, Mykola ; Urman, Aleksandra ; Kacperski, Celina Sylwia</creator><creatorcontrib>Ulloa, Roberto ; Richter, Ana Carolina ; Makhortykh, Mykola ; Urman, Aleksandra ; Kacperski, Celina Sylwia</creatorcontrib><description>Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representativeness and face-ism in search engine image results. We systematically queried four search engines (Google, Bing, Baidu, Yandex) from three locations, using two browsers and in two waves, with gender-neutral (person, intelligent person) and gendered (woman, intelligent woman, man, intelligent man) terminology, accessing the top 100 image results. We employed automatic identification for the individual’s gender expression (female/male) and the calculation of the face-to-body ratio of individuals depicted. We find that, as in other forms of media, search engine images perpetuate biases to the detriment of women, confirming the existence of the representation and face-ism biases. In-depth algorithmic debiasing with a specific focus on gender bias is overdue.</description><identifier>ISSN: 1461-4448</identifier><identifier>EISSN: 1461-7315</identifier><identifier>DOI: 10.1177/14614448221100699</identifier><identifier>PMID: 38774557</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>New media &amp; society, 2024-06, Vol.26 (6), p.3541-3567</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022.</rights><rights>The Author(s) 2022 2022 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963</citedby><cites>FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963</cites><orcidid>0000-0002-9870-5505 ; 0000-0001-7143-5317 ; 0000-0002-8844-5164 ; 0000-0003-3332-9294 ; 0000-0002-5704-1773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38774557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ulloa, Roberto</creatorcontrib><creatorcontrib>Richter, Ana Carolina</creatorcontrib><creatorcontrib>Makhortykh, Mykola</creatorcontrib><creatorcontrib>Urman, Aleksandra</creatorcontrib><creatorcontrib>Kacperski, Celina Sylwia</creatorcontrib><title>Representativeness and face-ism: Gender bias in image search</title><title>New media &amp; society</title><addtitle>New Media Soc</addtitle><description>Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representativeness and face-ism in search engine image results. We systematically queried four search engines (Google, Bing, Baidu, Yandex) from three locations, using two browsers and in two waves, with gender-neutral (person, intelligent person) and gendered (woman, intelligent woman, man, intelligent man) terminology, accessing the top 100 image results. We employed automatic identification for the individual’s gender expression (female/male) and the calculation of the face-to-body ratio of individuals depicted. We find that, as in other forms of media, search engine images perpetuate biases to the detriment of women, confirming the existence of the representation and face-ism biases. In-depth algorithmic debiasing with a specific focus on gender bias is overdue.</description><issn>1461-4448</issn><issn>1461-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp9kF1LwzAUhoMobk5_gDfSS286mzafIogMncJAEL0OaXq6ZbTpTNqB_96WTVEEr3LIec57Dg9C5ziZYsz5FSYME0JEmmKcJEzKAzQe_mKeYXq4rwdghE5CWCcJZoTLYzTKBOeEUj5GNy-w8RDAtbq1W3AQQqRdEZXaQGxDfR3NwRXgo9zqEFkX2VovIQqgvVmdoqNSVwHO9u8EvT3cv84e48Xz_Gl2t4gNYayNjeCU52lhIBUCG10QXBJJ8xIzWWpiShCC6YyzQnKtEyaozkpOsRSQMyJZNkG3u9xNl9fQ57jW60ptfH-M_1CNtup3x9mVWjZbhXsvqaC0T7jcJ_jmvYPQqtoGA1WlHTRdUFlCBcsEYQOKd6jxTQgeyu89OFGDdvVHez9z8fPA74kvzz0w3QGht6fWTeddL-yfxE9kZ4pk</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ulloa, Roberto</creator><creator>Richter, Ana Carolina</creator><creator>Makhortykh, Mykola</creator><creator>Urman, Aleksandra</creator><creator>Kacperski, Celina Sylwia</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9870-5505</orcidid><orcidid>https://orcid.org/0000-0001-7143-5317</orcidid><orcidid>https://orcid.org/0000-0002-8844-5164</orcidid><orcidid>https://orcid.org/0000-0003-3332-9294</orcidid><orcidid>https://orcid.org/0000-0002-5704-1773</orcidid></search><sort><creationdate>20240601</creationdate><title>Representativeness and face-ism: Gender bias in image search</title><author>Ulloa, Roberto ; Richter, Ana Carolina ; Makhortykh, Mykola ; Urman, Aleksandra ; Kacperski, Celina Sylwia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulloa, Roberto</creatorcontrib><creatorcontrib>Richter, Ana Carolina</creatorcontrib><creatorcontrib>Makhortykh, Mykola</creatorcontrib><creatorcontrib>Urman, Aleksandra</creatorcontrib><creatorcontrib>Kacperski, Celina Sylwia</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>New media &amp; society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulloa, Roberto</au><au>Richter, Ana Carolina</au><au>Makhortykh, Mykola</au><au>Urman, Aleksandra</au><au>Kacperski, Celina Sylwia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representativeness and face-ism: Gender bias in image search</atitle><jtitle>New media &amp; society</jtitle><addtitle>New Media Soc</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>26</volume><issue>6</issue><spage>3541</spage><epage>3567</epage><pages>3541-3567</pages><issn>1461-4448</issn><eissn>1461-7315</eissn><abstract>Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representativeness and face-ism in search engine image results. We systematically queried four search engines (Google, Bing, Baidu, Yandex) from three locations, using two browsers and in two waves, with gender-neutral (person, intelligent person) and gendered (woman, intelligent woman, man, intelligent man) terminology, accessing the top 100 image results. We employed automatic identification for the individual’s gender expression (female/male) and the calculation of the face-to-body ratio of individuals depicted. We find that, as in other forms of media, search engine images perpetuate biases to the detriment of women, confirming the existence of the representation and face-ism biases. In-depth algorithmic debiasing with a specific focus on gender bias is overdue.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>38774557</pmid><doi>10.1177/14614448221100699</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-9870-5505</orcidid><orcidid>https://orcid.org/0000-0001-7143-5317</orcidid><orcidid>https://orcid.org/0000-0002-8844-5164</orcidid><orcidid>https://orcid.org/0000-0003-3332-9294</orcidid><orcidid>https://orcid.org/0000-0002-5704-1773</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1461-4448
ispartof New media & society, 2024-06, Vol.26 (6), p.3541-3567
issn 1461-4448
1461-7315
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11102855
source Sage Journals Online
title Representativeness and face-ism: Gender bias in image search
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representativeness%20and%20face-ism:%20Gender%20bias%20in%20image%20search&rft.jtitle=New%20media%20&%20society&rft.au=Ulloa,%20Roberto&rft.date=2024-06-01&rft.volume=26&rft.issue=6&rft.spage=3541&rft.epage=3567&rft.pages=3541-3567&rft.issn=1461-4448&rft.eissn=1461-7315&rft_id=info:doi/10.1177/14614448221100699&rft_dat=%3Cproquest_pubme%3E3058638465%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-c8757b2dce2881cad41f495bf169fa4cfe886a376d97aa0685a3f75198eb64963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3058638465&rft_id=info:pmid/38774557&rft_sage_id=10.1177_14614448221100699&rfr_iscdi=true