Loading…

KIF2A characterization after spinal cord injury

Axons in the central nervous system (CNS) typically fail to regenerate after injury. This failure is multi-factorial and caused in part by disruption of the axonal cytoskeleton. The cytoskeleton, in particular microtubules (MT), plays a critical role in axonal transport and axon growth during develo...

Full description

Saved in:
Bibliographic Details
Published in:Cellular and molecular life sciences : CMLS 2019-11, Vol.76 (21), p.4355-4368
Main Authors: Seira, Oscar, Liu, Jie, Assinck, Peggy, Ramer, Matt, Tetzlaff, Wolfram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Axons in the central nervous system (CNS) typically fail to regenerate after injury. This failure is multi-factorial and caused in part by disruption of the axonal cytoskeleton. The cytoskeleton, in particular microtubules (MT), plays a critical role in axonal transport and axon growth during development. In this regard, members of the kinesin superfamily of proteins (KIFs) regulate the extension of primary axons toward their targets and control the growth of collateral branches. KIF2A negatively regulates axon growth through MT depolymerization. Using three different injury models to induce SCI in adult rats, we examined the temporal and cellular expression of KIF2A in the injured spinal cord. We observed a progressive increase of KIF2A expression with maximal levels at 10 days to 8 weeks post-injury as determined by Western blot analysis. KIF2A immunoreactivity was present in axons, spinal neurons and mature oligodendrocytes adjacent to the injury site. Results from the present study suggest that KIF2A at the injured axonal tips may contribute to neurite outgrowth inhibition after injury, and that its increased expression in inhibitory spinal neurons adjacent to the injury site might contribute to an intrinsic wiring-control mechanism associated with neuropathic pain. Further studies will determine whether KIF2A may be a potential target for the development of regeneration-promoting or pain-preventing therapies.
ISSN:1420-682X
1420-9071
DOI:10.1007/s00018-019-03116-2