Loading…

Exenatide reduces atrial fibrillation susceptibility by inhibiting hKv1.5 and hNav1.5 channels

Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting h...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2024-05, Vol.300 (5), p.107294-107294, Article 107294
Main Authors: Zhou, Qian, Hao, Guoliang, Xie, Wensen, Chen, Bin, Lu, Wuguang, Wang, Gongxin, Zhong, Rongling, Chen, Jiao, Ye, Juan, Shen, Jianping, Cao, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3194-a60648e20790b89639be3a9fccd2c69e3dc8b08d31b65945c621d5ffa15f5ca63
container_end_page 107294
container_issue 5
container_start_page 107294
container_title The Journal of biological chemistry
container_volume 300
creator Zhou, Qian
Hao, Guoliang
Xie, Wensen
Chen, Bin
Lu, Wuguang
Wang, Gongxin
Zhong, Rongling
Chen, Jiao
Ye, Juan
Shen, Jianping
Cao, Peng
description Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 μM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 μM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.
doi_str_mv 10.1016/j.jbc.2024.107294
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11109313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824017952</els_id><sourcerecordid>3043075239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3194-a60648e20790b89639be3a9fccd2c69e3dc8b08d31b65945c621d5ffa15f5ca63</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhB3BBPnLJ4rFjbywOCFUtICq4gMQJyx-Txquss9jJiv33uGyp4IIv49G889ozDyHPga2BgXq1XW-dX3PG25pvuG4fkBWwTjRCwreHZMUYh0Zz2Z2RJ6VsWT2thsfkTHRKKKXkiny__InJzjEgzRgWj4XaOUc70j66HMex1qZEy1I87ufo4hjnI3VHGtNQszmmGzp8PMBaUpsCHT7Z33c_2JRwLE_Jo96OBZ_dxXPy9eryy8X75vrzuw8Xb68bL0C3jVVMtR1yttHMdVoJ7VBY3XsfuFcaRfCdY10Q4JTUrfSKQ5B9b0H20lslzsmbk-9-cTsMHtOc7Wj2Oe5sPprJRvNvJcXB3EwHAwBMCxDV4eWdQ55-LFhms4t15rqAhNNSjGCtYBvJha5SOEl9nkrJ2N-_A8zcgjFbU8GYWzDmBKb2vPj7g_cdf0hUweuToG4NDxGzKT5i8hhiRj-bMMX_2P8C_8ifPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043075239</pqid></control><display><type>article</type><title>Exenatide reduces atrial fibrillation susceptibility by inhibiting hKv1.5 and hNav1.5 channels</title><source>ScienceDirect (Online service)</source><source>PubMed Central</source><creator>Zhou, Qian ; Hao, Guoliang ; Xie, Wensen ; Chen, Bin ; Lu, Wuguang ; Wang, Gongxin ; Zhong, Rongling ; Chen, Jiao ; Ye, Juan ; Shen, Jianping ; Cao, Peng</creator><creatorcontrib>Zhou, Qian ; Hao, Guoliang ; Xie, Wensen ; Chen, Bin ; Lu, Wuguang ; Wang, Gongxin ; Zhong, Rongling ; Chen, Jiao ; Ye, Juan ; Shen, Jianping ; Cao, Peng</creatorcontrib><description>Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 μM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 μM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.107294</identifier><identifier>PMID: 38636665</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - drug effects ; Animals ; atrial fibrillation ; Atrial Fibrillation - drug therapy ; Atrial Fibrillation - metabolism ; close channel block ; exenatide ; Exenatide - pharmacology ; Exenatide - therapeutic use ; HEK293 Cells ; hKv1.5 ; hNav1.5 ; Humans ; Kv1.5 Potassium Channel - antagonists &amp; inhibitors ; Male ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; NAV1.5 Voltage-Gated Sodium Channel - genetics ; NAV1.5 Voltage-Gated Sodium Channel - metabolism ; open channel block ; Rats ; Rats, Sprague-Dawley ; Voltage-Gated Sodium Channel Blockers - pharmacology ; Voltage-Gated Sodium Channel Blockers - therapeutic use</subject><ispartof>The Journal of biological chemistry, 2024-05, Vol.300 (5), p.107294-107294, Article 107294</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3194-a60648e20790b89639be3a9fccd2c69e3dc8b08d31b65945c621d5ffa15f5ca63</cites><orcidid>0000-0002-2044-3074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109313/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925824017952$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,3536,27905,27906,45761,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38636665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Hao, Guoliang</creatorcontrib><creatorcontrib>Xie, Wensen</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Lu, Wuguang</creatorcontrib><creatorcontrib>Wang, Gongxin</creatorcontrib><creatorcontrib>Zhong, Rongling</creatorcontrib><creatorcontrib>Chen, Jiao</creatorcontrib><creatorcontrib>Ye, Juan</creatorcontrib><creatorcontrib>Shen, Jianping</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><title>Exenatide reduces atrial fibrillation susceptibility by inhibiting hKv1.5 and hNav1.5 channels</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 μM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 μM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.</description><subject>Action Potentials - drug effects</subject><subject>Animals</subject><subject>atrial fibrillation</subject><subject>Atrial Fibrillation - drug therapy</subject><subject>Atrial Fibrillation - metabolism</subject><subject>close channel block</subject><subject>exenatide</subject><subject>Exenatide - pharmacology</subject><subject>Exenatide - therapeutic use</subject><subject>HEK293 Cells</subject><subject>hKv1.5</subject><subject>hNav1.5</subject><subject>Humans</subject><subject>Kv1.5 Potassium Channel - antagonists &amp; inhibitors</subject><subject>Male</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>NAV1.5 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.5 Voltage-Gated Sodium Channel - metabolism</subject><subject>open channel block</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Voltage-Gated Sodium Channel Blockers - pharmacology</subject><subject>Voltage-Gated Sodium Channel Blockers - therapeutic use</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvhB3BBPnLJ4rFjbywOCFUtICq4gMQJyx-Txquss9jJiv33uGyp4IIv49G889ozDyHPga2BgXq1XW-dX3PG25pvuG4fkBWwTjRCwreHZMUYh0Zz2Z2RJ6VsWT2thsfkTHRKKKXkiny__InJzjEgzRgWj4XaOUc70j66HMex1qZEy1I87ufo4hjnI3VHGtNQszmmGzp8PMBaUpsCHT7Z33c_2JRwLE_Jo96OBZ_dxXPy9eryy8X75vrzuw8Xb68bL0C3jVVMtR1yttHMdVoJ7VBY3XsfuFcaRfCdY10Q4JTUrfSKQ5B9b0H20lslzsmbk-9-cTsMHtOc7Wj2Oe5sPprJRvNvJcXB3EwHAwBMCxDV4eWdQ55-LFhms4t15rqAhNNSjGCtYBvJha5SOEl9nkrJ2N-_A8zcgjFbU8GYWzDmBKb2vPj7g_cdf0hUweuToG4NDxGzKT5i8hhiRj-bMMX_2P8C_8ifPw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhou, Qian</creator><creator>Hao, Guoliang</creator><creator>Xie, Wensen</creator><creator>Chen, Bin</creator><creator>Lu, Wuguang</creator><creator>Wang, Gongxin</creator><creator>Zhong, Rongling</creator><creator>Chen, Jiao</creator><creator>Ye, Juan</creator><creator>Shen, Jianping</creator><creator>Cao, Peng</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2044-3074</orcidid></search><sort><creationdate>20240501</creationdate><title>Exenatide reduces atrial fibrillation susceptibility by inhibiting hKv1.5 and hNav1.5 channels</title><author>Zhou, Qian ; Hao, Guoliang ; Xie, Wensen ; Chen, Bin ; Lu, Wuguang ; Wang, Gongxin ; Zhong, Rongling ; Chen, Jiao ; Ye, Juan ; Shen, Jianping ; Cao, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3194-a60648e20790b89639be3a9fccd2c69e3dc8b08d31b65945c621d5ffa15f5ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Action Potentials - drug effects</topic><topic>Animals</topic><topic>atrial fibrillation</topic><topic>Atrial Fibrillation - drug therapy</topic><topic>Atrial Fibrillation - metabolism</topic><topic>close channel block</topic><topic>exenatide</topic><topic>Exenatide - pharmacology</topic><topic>Exenatide - therapeutic use</topic><topic>HEK293 Cells</topic><topic>hKv1.5</topic><topic>hNav1.5</topic><topic>Humans</topic><topic>Kv1.5 Potassium Channel - antagonists &amp; inhibitors</topic><topic>Male</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>NAV1.5 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.5 Voltage-Gated Sodium Channel - metabolism</topic><topic>open channel block</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Voltage-Gated Sodium Channel Blockers - pharmacology</topic><topic>Voltage-Gated Sodium Channel Blockers - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Hao, Guoliang</creatorcontrib><creatorcontrib>Xie, Wensen</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Lu, Wuguang</creatorcontrib><creatorcontrib>Wang, Gongxin</creatorcontrib><creatorcontrib>Zhong, Rongling</creatorcontrib><creatorcontrib>Chen, Jiao</creatorcontrib><creatorcontrib>Ye, Juan</creatorcontrib><creatorcontrib>Shen, Jianping</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Qian</au><au>Hao, Guoliang</au><au>Xie, Wensen</au><au>Chen, Bin</au><au>Lu, Wuguang</au><au>Wang, Gongxin</au><au>Zhong, Rongling</au><au>Chen, Jiao</au><au>Ye, Juan</au><au>Shen, Jianping</au><au>Cao, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exenatide reduces atrial fibrillation susceptibility by inhibiting hKv1.5 and hNav1.5 channels</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>300</volume><issue>5</issue><spage>107294</spage><epage>107294</epage><pages>107294-107294</pages><artnum>107294</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 μM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 μM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38636665</pmid><doi>10.1016/j.jbc.2024.107294</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2044-3074</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2024-05, Vol.300 (5), p.107294-107294, Article 107294
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11109313
source ScienceDirect (Online service); PubMed Central
subjects Action Potentials - drug effects
Animals
atrial fibrillation
Atrial Fibrillation - drug therapy
Atrial Fibrillation - metabolism
close channel block
exenatide
Exenatide - pharmacology
Exenatide - therapeutic use
HEK293 Cells
hKv1.5
hNav1.5
Humans
Kv1.5 Potassium Channel - antagonists & inhibitors
Male
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
NAV1.5 Voltage-Gated Sodium Channel - genetics
NAV1.5 Voltage-Gated Sodium Channel - metabolism
open channel block
Rats
Rats, Sprague-Dawley
Voltage-Gated Sodium Channel Blockers - pharmacology
Voltage-Gated Sodium Channel Blockers - therapeutic use
title Exenatide reduces atrial fibrillation susceptibility by inhibiting hKv1.5 and hNav1.5 channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exenatide%20reduces%20atrial%20fibrillation%20susceptibility%20by%20inhibiting%20hKv1.5%20and%20hNav1.5%20channels&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Zhou,%20Qian&rft.date=2024-05-01&rft.volume=300&rft.issue=5&rft.spage=107294&rft.epage=107294&rft.pages=107294-107294&rft.artnum=107294&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.107294&rft_dat=%3Cproquest_pubme%3E3043075239%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3194-a60648e20790b89639be3a9fccd2c69e3dc8b08d31b65945c621d5ffa15f5ca63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3043075239&rft_id=info:pmid/38636665&rfr_iscdi=true