Loading…
Exenatide reduces atrial fibrillation susceptibility by inhibiting hKv1.5 and hNav1.5 channels
Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting h...
Saved in:
Published in: | The Journal of biological chemistry 2024-05, Vol.300 (5), p.107294-107294, Article 107294 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3194-a60648e20790b89639be3a9fccd2c69e3dc8b08d31b65945c621d5ffa15f5ca63 |
container_end_page | 107294 |
container_issue | 5 |
container_start_page | 107294 |
container_title | The Journal of biological chemistry |
container_volume | 300 |
creator | Zhou, Qian Hao, Guoliang Xie, Wensen Chen, Bin Lu, Wuguang Wang, Gongxin Zhong, Rongling Chen, Jiao Ye, Juan Shen, Jianping Cao, Peng |
description | Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 μM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 μM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats. |
doi_str_mv | 10.1016/j.jbc.2024.107294 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11109313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824017952</els_id><sourcerecordid>3043075239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3194-a60648e20790b89639be3a9fccd2c69e3dc8b08d31b65945c621d5ffa15f5ca63</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhB3BBPnLJ4rFjbywOCFUtICq4gMQJyx-Txquss9jJiv33uGyp4IIv49G889ozDyHPga2BgXq1XW-dX3PG25pvuG4fkBWwTjRCwreHZMUYh0Zz2Z2RJ6VsWT2thsfkTHRKKKXkiny__InJzjEgzRgWj4XaOUc70j66HMex1qZEy1I87ufo4hjnI3VHGtNQszmmGzp8PMBaUpsCHT7Z33c_2JRwLE_Jo96OBZ_dxXPy9eryy8X75vrzuw8Xb68bL0C3jVVMtR1yttHMdVoJ7VBY3XsfuFcaRfCdY10Q4JTUrfSKQ5B9b0H20lslzsmbk-9-cTsMHtOc7Wj2Oe5sPprJRvNvJcXB3EwHAwBMCxDV4eWdQ55-LFhms4t15rqAhNNSjGCtYBvJha5SOEl9nkrJ2N-_A8zcgjFbU8GYWzDmBKb2vPj7g_cdf0hUweuToG4NDxGzKT5i8hhiRj-bMMX_2P8C_8ifPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043075239</pqid></control><display><type>article</type><title>Exenatide reduces atrial fibrillation susceptibility by inhibiting hKv1.5 and hNav1.5 channels</title><source>ScienceDirect (Online service)</source><source>PubMed Central</source><creator>Zhou, Qian ; Hao, Guoliang ; Xie, Wensen ; Chen, Bin ; Lu, Wuguang ; Wang, Gongxin ; Zhong, Rongling ; Chen, Jiao ; Ye, Juan ; Shen, Jianping ; Cao, Peng</creator><creatorcontrib>Zhou, Qian ; Hao, Guoliang ; Xie, Wensen ; Chen, Bin ; Lu, Wuguang ; Wang, Gongxin ; Zhong, Rongling ; Chen, Jiao ; Ye, Juan ; Shen, Jianping ; Cao, Peng</creatorcontrib><description>Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 μM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 μM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.107294</identifier><identifier>PMID: 38636665</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - drug effects ; Animals ; atrial fibrillation ; Atrial Fibrillation - drug therapy ; Atrial Fibrillation - metabolism ; close channel block ; exenatide ; Exenatide - pharmacology ; Exenatide - therapeutic use ; HEK293 Cells ; hKv1.5 ; hNav1.5 ; Humans ; Kv1.5 Potassium Channel - antagonists & inhibitors ; Male ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; NAV1.5 Voltage-Gated Sodium Channel - genetics ; NAV1.5 Voltage-Gated Sodium Channel - metabolism ; open channel block ; Rats ; Rats, Sprague-Dawley ; Voltage-Gated Sodium Channel Blockers - pharmacology ; Voltage-Gated Sodium Channel Blockers - therapeutic use</subject><ispartof>The Journal of biological chemistry, 2024-05, Vol.300 (5), p.107294-107294, Article 107294</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3194-a60648e20790b89639be3a9fccd2c69e3dc8b08d31b65945c621d5ffa15f5ca63</cites><orcidid>0000-0002-2044-3074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109313/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925824017952$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,3536,27905,27906,45761,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38636665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Hao, Guoliang</creatorcontrib><creatorcontrib>Xie, Wensen</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Lu, Wuguang</creatorcontrib><creatorcontrib>Wang, Gongxin</creatorcontrib><creatorcontrib>Zhong, Rongling</creatorcontrib><creatorcontrib>Chen, Jiao</creatorcontrib><creatorcontrib>Ye, Juan</creatorcontrib><creatorcontrib>Shen, Jianping</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><title>Exenatide reduces atrial fibrillation susceptibility by inhibiting hKv1.5 and hNav1.5 channels</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 μM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 μM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.</description><subject>Action Potentials - drug effects</subject><subject>Animals</subject><subject>atrial fibrillation</subject><subject>Atrial Fibrillation - drug therapy</subject><subject>Atrial Fibrillation - metabolism</subject><subject>close channel block</subject><subject>exenatide</subject><subject>Exenatide - pharmacology</subject><subject>Exenatide - therapeutic use</subject><subject>HEK293 Cells</subject><subject>hKv1.5</subject><subject>hNav1.5</subject><subject>Humans</subject><subject>Kv1.5 Potassium Channel - antagonists & inhibitors</subject><subject>Male</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>NAV1.5 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.5 Voltage-Gated Sodium Channel - metabolism</subject><subject>open channel block</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Voltage-Gated Sodium Channel Blockers - pharmacology</subject><subject>Voltage-Gated Sodium Channel Blockers - therapeutic use</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvhB3BBPnLJ4rFjbywOCFUtICq4gMQJyx-Txquss9jJiv33uGyp4IIv49G889ozDyHPga2BgXq1XW-dX3PG25pvuG4fkBWwTjRCwreHZMUYh0Zz2Z2RJ6VsWT2thsfkTHRKKKXkiny__InJzjEgzRgWj4XaOUc70j66HMex1qZEy1I87ufo4hjnI3VHGtNQszmmGzp8PMBaUpsCHT7Z33c_2JRwLE_Jo96OBZ_dxXPy9eryy8X75vrzuw8Xb68bL0C3jVVMtR1yttHMdVoJ7VBY3XsfuFcaRfCdY10Q4JTUrfSKQ5B9b0H20lslzsmbk-9-cTsMHtOc7Wj2Oe5sPprJRvNvJcXB3EwHAwBMCxDV4eWdQ55-LFhms4t15rqAhNNSjGCtYBvJha5SOEl9nkrJ2N-_A8zcgjFbU8GYWzDmBKb2vPj7g_cdf0hUweuToG4NDxGzKT5i8hhiRj-bMMX_2P8C_8ifPw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhou, Qian</creator><creator>Hao, Guoliang</creator><creator>Xie, Wensen</creator><creator>Chen, Bin</creator><creator>Lu, Wuguang</creator><creator>Wang, Gongxin</creator><creator>Zhong, Rongling</creator><creator>Chen, Jiao</creator><creator>Ye, Juan</creator><creator>Shen, Jianping</creator><creator>Cao, Peng</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2044-3074</orcidid></search><sort><creationdate>20240501</creationdate><title>Exenatide reduces atrial fibrillation susceptibility by inhibiting hKv1.5 and hNav1.5 channels</title><author>Zhou, Qian ; Hao, Guoliang ; Xie, Wensen ; Chen, Bin ; Lu, Wuguang ; Wang, Gongxin ; Zhong, Rongling ; Chen, Jiao ; Ye, Juan ; Shen, Jianping ; Cao, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3194-a60648e20790b89639be3a9fccd2c69e3dc8b08d31b65945c621d5ffa15f5ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Action Potentials - drug effects</topic><topic>Animals</topic><topic>atrial fibrillation</topic><topic>Atrial Fibrillation - drug therapy</topic><topic>Atrial Fibrillation - metabolism</topic><topic>close channel block</topic><topic>exenatide</topic><topic>Exenatide - pharmacology</topic><topic>Exenatide - therapeutic use</topic><topic>HEK293 Cells</topic><topic>hKv1.5</topic><topic>hNav1.5</topic><topic>Humans</topic><topic>Kv1.5 Potassium Channel - antagonists & inhibitors</topic><topic>Male</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>NAV1.5 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.5 Voltage-Gated Sodium Channel - metabolism</topic><topic>open channel block</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Voltage-Gated Sodium Channel Blockers - pharmacology</topic><topic>Voltage-Gated Sodium Channel Blockers - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Hao, Guoliang</creatorcontrib><creatorcontrib>Xie, Wensen</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Lu, Wuguang</creatorcontrib><creatorcontrib>Wang, Gongxin</creatorcontrib><creatorcontrib>Zhong, Rongling</creatorcontrib><creatorcontrib>Chen, Jiao</creatorcontrib><creatorcontrib>Ye, Juan</creatorcontrib><creatorcontrib>Shen, Jianping</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Qian</au><au>Hao, Guoliang</au><au>Xie, Wensen</au><au>Chen, Bin</au><au>Lu, Wuguang</au><au>Wang, Gongxin</au><au>Zhong, Rongling</au><au>Chen, Jiao</au><au>Ye, Juan</au><au>Shen, Jianping</au><au>Cao, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exenatide reduces atrial fibrillation susceptibility by inhibiting hKv1.5 and hNav1.5 channels</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>300</volume><issue>5</issue><spage>107294</spage><epage>107294</epage><pages>107294-107294</pages><artnum>107294</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 μM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 μM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38636665</pmid><doi>10.1016/j.jbc.2024.107294</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2044-3074</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2024-05, Vol.300 (5), p.107294-107294, Article 107294 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11109313 |
source | ScienceDirect (Online service); PubMed Central |
subjects | Action Potentials - drug effects Animals atrial fibrillation Atrial Fibrillation - drug therapy Atrial Fibrillation - metabolism close channel block exenatide Exenatide - pharmacology Exenatide - therapeutic use HEK293 Cells hKv1.5 hNav1.5 Humans Kv1.5 Potassium Channel - antagonists & inhibitors Male Myocytes, Cardiac - drug effects Myocytes, Cardiac - metabolism NAV1.5 Voltage-Gated Sodium Channel - genetics NAV1.5 Voltage-Gated Sodium Channel - metabolism open channel block Rats Rats, Sprague-Dawley Voltage-Gated Sodium Channel Blockers - pharmacology Voltage-Gated Sodium Channel Blockers - therapeutic use |
title | Exenatide reduces atrial fibrillation susceptibility by inhibiting hKv1.5 and hNav1.5 channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exenatide%20reduces%20atrial%20fibrillation%20susceptibility%20by%20inhibiting%20hKv1.5%20and%20hNav1.5%20channels&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Zhou,%20Qian&rft.date=2024-05-01&rft.volume=300&rft.issue=5&rft.spage=107294&rft.epage=107294&rft.pages=107294-107294&rft.artnum=107294&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.107294&rft_dat=%3Cproquest_pubme%3E3043075239%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3194-a60648e20790b89639be3a9fccd2c69e3dc8b08d31b65945c621d5ffa15f5ca63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3043075239&rft_id=info:pmid/38636665&rfr_iscdi=true |