Loading…

Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs

In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including mult...

Full description

Saved in:
Bibliographic Details
Published in:JCI insight 2024-04, Vol.9 (7)
Main Authors: Baeten, Paulien, Hamad, Ibrahim, Hoeks, Cindy, Hiltensperger, Michael, Van Wijmeersch, Bart, Popescu, Veronica, Aly, Lilian, Somers, Veerle, Korn, Thomas, Kleinewietfeld, Markus, Hellings, Niels, Broux, Bieke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53
cites cdi_FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53
container_end_page
container_issue 7
container_start_page
container_title JCI insight
container_volume 9
creator Baeten, Paulien
Hamad, Ibrahim
Hoeks, Cindy
Hiltensperger, Michael
Van Wijmeersch, Bart
Popescu, Veronica
Aly, Lilian
Somers, Veerle
Korn, Thomas
Kleinewietfeld, Markus
Hellings, Niels
Broux, Bieke
description In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS.
doi_str_mv 10.1172/jci.insight.167457
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11128200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034777340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53</originalsourceid><addsrcrecordid>eNpVUV1LwzAUDaK4ofsDPkgffem8adImfRIZfuFAkPkc0jTtMtpkJp2wf2_G5phP98A959yPg9ANhinGLLtfKTM1Nph2OUxxwWjOztA4I6xMCQN-foJHaBLCCgAwoxnk_BKNCCe8oJiM0funXMt-q4xNvA5qo0PSuRAS1yTNxqrBOJvEXtU5V6eVlzssvTfap8YO2stIsW2y8LoN1-iikV3Qk0O9Ql_PT4vZazr_eHmbPc5TRYEMqc6zIu5RlSQHSTBWdVEqWlYU54xzlUHZANRK19BQKBUumniw5lLSOq_qJidX6GHvu95UvY5MO3jZibU3vfRb4aQR_zvWLEXrfgTGOOMZQHS4Ozh49x1vHkRvgtJdJ612myAIEMoYI3RHzfZU5eNfvG6OczCIXRIiJiEOSYh9ElF0e7rhUfL3d_ILO_-Iqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034777340</pqid></control><display><type>article</type><title>Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs</title><source>PubMed Central</source><creator>Baeten, Paulien ; Hamad, Ibrahim ; Hoeks, Cindy ; Hiltensperger, Michael ; Van Wijmeersch, Bart ; Popescu, Veronica ; Aly, Lilian ; Somers, Veerle ; Korn, Thomas ; Kleinewietfeld, Markus ; Hellings, Niels ; Broux, Bieke</creator><creatorcontrib>Baeten, Paulien ; Hamad, Ibrahim ; Hoeks, Cindy ; Hiltensperger, Michael ; Van Wijmeersch, Bart ; Popescu, Veronica ; Aly, Lilian ; Somers, Veerle ; Korn, Thomas ; Kleinewietfeld, Markus ; Hellings, Niels ; Broux, Bieke</creatorcontrib><description>In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS.</description><identifier>ISSN: 2379-3708</identifier><identifier>EISSN: 2379-3708</identifier><identifier>DOI: 10.1172/jci.insight.167457</identifier><identifier>PMID: 38386413</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Autoimmune Diseases ; Blood-Brain Barrier - metabolism ; Cytokines - metabolism ; Endothelial Cells - metabolism ; Humans ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; Multiple Sclerosis - drug therapy ; Sirolimus - pharmacology ; T-Lymphocytes, Regulatory</subject><ispartof>JCI insight, 2024-04, Vol.9 (7)</ispartof><rights>2024 Baeten et al. 2024 Baeten et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53</citedby><cites>FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53</cites><orcidid>0000-0002-6107-2177 ; 0000-0002-7051-124X ; 0000-0002-2832-3149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128200/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128200/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38386413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baeten, Paulien</creatorcontrib><creatorcontrib>Hamad, Ibrahim</creatorcontrib><creatorcontrib>Hoeks, Cindy</creatorcontrib><creatorcontrib>Hiltensperger, Michael</creatorcontrib><creatorcontrib>Van Wijmeersch, Bart</creatorcontrib><creatorcontrib>Popescu, Veronica</creatorcontrib><creatorcontrib>Aly, Lilian</creatorcontrib><creatorcontrib>Somers, Veerle</creatorcontrib><creatorcontrib>Korn, Thomas</creatorcontrib><creatorcontrib>Kleinewietfeld, Markus</creatorcontrib><creatorcontrib>Hellings, Niels</creatorcontrib><creatorcontrib>Broux, Bieke</creatorcontrib><title>Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs</title><title>JCI insight</title><addtitle>JCI Insight</addtitle><description>In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS.</description><subject>Animals</subject><subject>Autoimmune Diseases</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Cytokines - metabolism</subject><subject>Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>Multiple Sclerosis - drug therapy</subject><subject>Sirolimus - pharmacology</subject><subject>T-Lymphocytes, Regulatory</subject><issn>2379-3708</issn><issn>2379-3708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUV1LwzAUDaK4ofsDPkgffem8adImfRIZfuFAkPkc0jTtMtpkJp2wf2_G5phP98A959yPg9ANhinGLLtfKTM1Nph2OUxxwWjOztA4I6xMCQN-foJHaBLCCgAwoxnk_BKNCCe8oJiM0funXMt-q4xNvA5qo0PSuRAS1yTNxqrBOJvEXtU5V6eVlzssvTfap8YO2stIsW2y8LoN1-iikV3Qk0O9Ql_PT4vZazr_eHmbPc5TRYEMqc6zIu5RlSQHSTBWdVEqWlYU54xzlUHZANRK19BQKBUumniw5lLSOq_qJidX6GHvu95UvY5MO3jZibU3vfRb4aQR_zvWLEXrfgTGOOMZQHS4Ozh49x1vHkRvgtJdJ612myAIEMoYI3RHzfZU5eNfvG6OczCIXRIiJiEOSYh9ElF0e7rhUfL3d_ILO_-Iqw</recordid><startdate>20240408</startdate><enddate>20240408</enddate><creator>Baeten, Paulien</creator><creator>Hamad, Ibrahim</creator><creator>Hoeks, Cindy</creator><creator>Hiltensperger, Michael</creator><creator>Van Wijmeersch, Bart</creator><creator>Popescu, Veronica</creator><creator>Aly, Lilian</creator><creator>Somers, Veerle</creator><creator>Korn, Thomas</creator><creator>Kleinewietfeld, Markus</creator><creator>Hellings, Niels</creator><creator>Broux, Bieke</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6107-2177</orcidid><orcidid>https://orcid.org/0000-0002-7051-124X</orcidid><orcidid>https://orcid.org/0000-0002-2832-3149</orcidid></search><sort><creationdate>20240408</creationdate><title>Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs</title><author>Baeten, Paulien ; Hamad, Ibrahim ; Hoeks, Cindy ; Hiltensperger, Michael ; Van Wijmeersch, Bart ; Popescu, Veronica ; Aly, Lilian ; Somers, Veerle ; Korn, Thomas ; Kleinewietfeld, Markus ; Hellings, Niels ; Broux, Bieke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Autoimmune Diseases</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Cytokines - metabolism</topic><topic>Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>Multiple Sclerosis - drug therapy</topic><topic>Sirolimus - pharmacology</topic><topic>T-Lymphocytes, Regulatory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baeten, Paulien</creatorcontrib><creatorcontrib>Hamad, Ibrahim</creatorcontrib><creatorcontrib>Hoeks, Cindy</creatorcontrib><creatorcontrib>Hiltensperger, Michael</creatorcontrib><creatorcontrib>Van Wijmeersch, Bart</creatorcontrib><creatorcontrib>Popescu, Veronica</creatorcontrib><creatorcontrib>Aly, Lilian</creatorcontrib><creatorcontrib>Somers, Veerle</creatorcontrib><creatorcontrib>Korn, Thomas</creatorcontrib><creatorcontrib>Kleinewietfeld, Markus</creatorcontrib><creatorcontrib>Hellings, Niels</creatorcontrib><creatorcontrib>Broux, Bieke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JCI insight</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baeten, Paulien</au><au>Hamad, Ibrahim</au><au>Hoeks, Cindy</au><au>Hiltensperger, Michael</au><au>Van Wijmeersch, Bart</au><au>Popescu, Veronica</au><au>Aly, Lilian</au><au>Somers, Veerle</au><au>Korn, Thomas</au><au>Kleinewietfeld, Markus</au><au>Hellings, Niels</au><au>Broux, Bieke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs</atitle><jtitle>JCI insight</jtitle><addtitle>JCI Insight</addtitle><date>2024-04-08</date><risdate>2024</risdate><volume>9</volume><issue>7</issue><issn>2379-3708</issn><eissn>2379-3708</eissn><abstract>In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>38386413</pmid><doi>10.1172/jci.insight.167457</doi><orcidid>https://orcid.org/0000-0002-6107-2177</orcidid><orcidid>https://orcid.org/0000-0002-7051-124X</orcidid><orcidid>https://orcid.org/0000-0002-2832-3149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-3708
ispartof JCI insight, 2024-04, Vol.9 (7)
issn 2379-3708
2379-3708
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11128200
source PubMed Central
subjects Animals
Autoimmune Diseases
Blood-Brain Barrier - metabolism
Cytokines - metabolism
Endothelial Cells - metabolism
Humans
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mice
Multiple Sclerosis - drug therapy
Sirolimus - pharmacology
T-Lymphocytes, Regulatory
title Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapamycin%20rescues%20loss%20of%20function%20in%20blood-brain%20barrier-interacting%20Tregs&rft.jtitle=JCI%20insight&rft.au=Baeten,%20Paulien&rft.date=2024-04-08&rft.volume=9&rft.issue=7&rft.issn=2379-3708&rft.eissn=2379-3708&rft_id=info:doi/10.1172/jci.insight.167457&rft_dat=%3Cproquest_pubme%3E3034777340%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3034777340&rft_id=info:pmid/38386413&rfr_iscdi=true