Loading…
Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs
In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including mult...
Saved in:
Published in: | JCI insight 2024-04, Vol.9 (7) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | JCI insight |
container_volume | 9 |
creator | Baeten, Paulien Hamad, Ibrahim Hoeks, Cindy Hiltensperger, Michael Van Wijmeersch, Bart Popescu, Veronica Aly, Lilian Somers, Veerle Korn, Thomas Kleinewietfeld, Markus Hellings, Niels Broux, Bieke |
description | In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS. |
doi_str_mv | 10.1172/jci.insight.167457 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11128200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034777340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53</originalsourceid><addsrcrecordid>eNpVUV1LwzAUDaK4ofsDPkgffem8adImfRIZfuFAkPkc0jTtMtpkJp2wf2_G5phP98A959yPg9ANhinGLLtfKTM1Nph2OUxxwWjOztA4I6xMCQN-foJHaBLCCgAwoxnk_BKNCCe8oJiM0funXMt-q4xNvA5qo0PSuRAS1yTNxqrBOJvEXtU5V6eVlzssvTfap8YO2stIsW2y8LoN1-iikV3Qk0O9Ql_PT4vZazr_eHmbPc5TRYEMqc6zIu5RlSQHSTBWdVEqWlYU54xzlUHZANRK19BQKBUumniw5lLSOq_qJidX6GHvu95UvY5MO3jZibU3vfRb4aQR_zvWLEXrfgTGOOMZQHS4Ozh49x1vHkRvgtJdJ612myAIEMoYI3RHzfZU5eNfvG6OczCIXRIiJiEOSYh9ElF0e7rhUfL3d_ILO_-Iqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034777340</pqid></control><display><type>article</type><title>Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs</title><source>PubMed Central</source><creator>Baeten, Paulien ; Hamad, Ibrahim ; Hoeks, Cindy ; Hiltensperger, Michael ; Van Wijmeersch, Bart ; Popescu, Veronica ; Aly, Lilian ; Somers, Veerle ; Korn, Thomas ; Kleinewietfeld, Markus ; Hellings, Niels ; Broux, Bieke</creator><creatorcontrib>Baeten, Paulien ; Hamad, Ibrahim ; Hoeks, Cindy ; Hiltensperger, Michael ; Van Wijmeersch, Bart ; Popescu, Veronica ; Aly, Lilian ; Somers, Veerle ; Korn, Thomas ; Kleinewietfeld, Markus ; Hellings, Niels ; Broux, Bieke</creatorcontrib><description>In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS.</description><identifier>ISSN: 2379-3708</identifier><identifier>EISSN: 2379-3708</identifier><identifier>DOI: 10.1172/jci.insight.167457</identifier><identifier>PMID: 38386413</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Autoimmune Diseases ; Blood-Brain Barrier - metabolism ; Cytokines - metabolism ; Endothelial Cells - metabolism ; Humans ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; Multiple Sclerosis - drug therapy ; Sirolimus - pharmacology ; T-Lymphocytes, Regulatory</subject><ispartof>JCI insight, 2024-04, Vol.9 (7)</ispartof><rights>2024 Baeten et al. 2024 Baeten et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53</citedby><cites>FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53</cites><orcidid>0000-0002-6107-2177 ; 0000-0002-7051-124X ; 0000-0002-2832-3149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128200/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128200/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38386413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baeten, Paulien</creatorcontrib><creatorcontrib>Hamad, Ibrahim</creatorcontrib><creatorcontrib>Hoeks, Cindy</creatorcontrib><creatorcontrib>Hiltensperger, Michael</creatorcontrib><creatorcontrib>Van Wijmeersch, Bart</creatorcontrib><creatorcontrib>Popescu, Veronica</creatorcontrib><creatorcontrib>Aly, Lilian</creatorcontrib><creatorcontrib>Somers, Veerle</creatorcontrib><creatorcontrib>Korn, Thomas</creatorcontrib><creatorcontrib>Kleinewietfeld, Markus</creatorcontrib><creatorcontrib>Hellings, Niels</creatorcontrib><creatorcontrib>Broux, Bieke</creatorcontrib><title>Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs</title><title>JCI insight</title><addtitle>JCI Insight</addtitle><description>In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS.</description><subject>Animals</subject><subject>Autoimmune Diseases</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Cytokines - metabolism</subject><subject>Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>Multiple Sclerosis - drug therapy</subject><subject>Sirolimus - pharmacology</subject><subject>T-Lymphocytes, Regulatory</subject><issn>2379-3708</issn><issn>2379-3708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUV1LwzAUDaK4ofsDPkgffem8adImfRIZfuFAkPkc0jTtMtpkJp2wf2_G5phP98A959yPg9ANhinGLLtfKTM1Nph2OUxxwWjOztA4I6xMCQN-foJHaBLCCgAwoxnk_BKNCCe8oJiM0funXMt-q4xNvA5qo0PSuRAS1yTNxqrBOJvEXtU5V6eVlzssvTfap8YO2stIsW2y8LoN1-iikV3Qk0O9Ql_PT4vZazr_eHmbPc5TRYEMqc6zIu5RlSQHSTBWdVEqWlYU54xzlUHZANRK19BQKBUumniw5lLSOq_qJidX6GHvu95UvY5MO3jZibU3vfRb4aQR_zvWLEXrfgTGOOMZQHS4Ozh49x1vHkRvgtJdJ612myAIEMoYI3RHzfZU5eNfvG6OczCIXRIiJiEOSYh9ElF0e7rhUfL3d_ILO_-Iqw</recordid><startdate>20240408</startdate><enddate>20240408</enddate><creator>Baeten, Paulien</creator><creator>Hamad, Ibrahim</creator><creator>Hoeks, Cindy</creator><creator>Hiltensperger, Michael</creator><creator>Van Wijmeersch, Bart</creator><creator>Popescu, Veronica</creator><creator>Aly, Lilian</creator><creator>Somers, Veerle</creator><creator>Korn, Thomas</creator><creator>Kleinewietfeld, Markus</creator><creator>Hellings, Niels</creator><creator>Broux, Bieke</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6107-2177</orcidid><orcidid>https://orcid.org/0000-0002-7051-124X</orcidid><orcidid>https://orcid.org/0000-0002-2832-3149</orcidid></search><sort><creationdate>20240408</creationdate><title>Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs</title><author>Baeten, Paulien ; Hamad, Ibrahim ; Hoeks, Cindy ; Hiltensperger, Michael ; Van Wijmeersch, Bart ; Popescu, Veronica ; Aly, Lilian ; Somers, Veerle ; Korn, Thomas ; Kleinewietfeld, Markus ; Hellings, Niels ; Broux, Bieke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Autoimmune Diseases</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Cytokines - metabolism</topic><topic>Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>Multiple Sclerosis - drug therapy</topic><topic>Sirolimus - pharmacology</topic><topic>T-Lymphocytes, Regulatory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baeten, Paulien</creatorcontrib><creatorcontrib>Hamad, Ibrahim</creatorcontrib><creatorcontrib>Hoeks, Cindy</creatorcontrib><creatorcontrib>Hiltensperger, Michael</creatorcontrib><creatorcontrib>Van Wijmeersch, Bart</creatorcontrib><creatorcontrib>Popescu, Veronica</creatorcontrib><creatorcontrib>Aly, Lilian</creatorcontrib><creatorcontrib>Somers, Veerle</creatorcontrib><creatorcontrib>Korn, Thomas</creatorcontrib><creatorcontrib>Kleinewietfeld, Markus</creatorcontrib><creatorcontrib>Hellings, Niels</creatorcontrib><creatorcontrib>Broux, Bieke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JCI insight</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baeten, Paulien</au><au>Hamad, Ibrahim</au><au>Hoeks, Cindy</au><au>Hiltensperger, Michael</au><au>Van Wijmeersch, Bart</au><au>Popescu, Veronica</au><au>Aly, Lilian</au><au>Somers, Veerle</au><au>Korn, Thomas</au><au>Kleinewietfeld, Markus</au><au>Hellings, Niels</au><au>Broux, Bieke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs</atitle><jtitle>JCI insight</jtitle><addtitle>JCI Insight</addtitle><date>2024-04-08</date><risdate>2024</risdate><volume>9</volume><issue>7</issue><issn>2379-3708</issn><eissn>2379-3708</eissn><abstract>In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>38386413</pmid><doi>10.1172/jci.insight.167457</doi><orcidid>https://orcid.org/0000-0002-6107-2177</orcidid><orcidid>https://orcid.org/0000-0002-7051-124X</orcidid><orcidid>https://orcid.org/0000-0002-2832-3149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-3708 |
ispartof | JCI insight, 2024-04, Vol.9 (7) |
issn | 2379-3708 2379-3708 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11128200 |
source | PubMed Central |
subjects | Animals Autoimmune Diseases Blood-Brain Barrier - metabolism Cytokines - metabolism Endothelial Cells - metabolism Humans Mechanistic Target of Rapamycin Complex 1 - metabolism Mice Multiple Sclerosis - drug therapy Sirolimus - pharmacology T-Lymphocytes, Regulatory |
title | Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapamycin%20rescues%20loss%20of%20function%20in%20blood-brain%20barrier-interacting%20Tregs&rft.jtitle=JCI%20insight&rft.au=Baeten,%20Paulien&rft.date=2024-04-08&rft.volume=9&rft.issue=7&rft.issn=2379-3708&rft.eissn=2379-3708&rft_id=info:doi/10.1172/jci.insight.167457&rft_dat=%3Cproquest_pubme%3E3034777340%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-e526205b9350a311cd69c49b415788c209f00dced0f409c16f117e8aa4d5bdf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3034777340&rft_id=info:pmid/38386413&rfr_iscdi=true |