Loading…
Alloxan acts as a prooxidant only under reducing conditions: influence of melatonin
Depending on the availability of suitable reducing agents, alloxan can be either a prooxidant or an antioxidant. Alloxan and its reduced derivative, dialuric acid, act as a redox couple, driven by reduced glutathione (GSH) or L-cysteine, generating in vitro in the presence of oxygen, both superoxide...
Saved in:
Published in: | Cellular and molecular life sciences : CMLS 1999-03, Vol.55 (3), p.487-493 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Depending on the availability of suitable reducing agents, alloxan can be either a prooxidant or an antioxidant. Alloxan and its reduced derivative, dialuric acid, act as a redox couple, driven by reduced glutathione (GSH) or L-cysteine, generating in vitro in the presence of oxygen, both superoxide radical and hydrogen peroxide. The production of superoxide radicals was shown by the appearance of lucigenin chemiluminescence (CL) as well as by the generation of formazan from nitroblue tetrazolium (NBT). The lucigenin CL as well as the NBT reduction was inhibited by superoxide dismutase and partially by catalase. Melatonin inhibited alloxan-mediated CL. In contrast, in the absence of reducing agents, alloxan is a scavenger of superoxide radicals formed by other reactions. Because of the high content of reducing compounds in the cell (e.g. glutathione), it is suggested that alloxan acts in vivo mainly as a generator of reactive oxygen species. |
---|---|
ISSN: | 1420-682X 1420-9071 |
DOI: | 10.1007/s000180050305 |