Loading…
Ternary complexes of isopentenyl phosphate kinase from Thermococcus paralvinellae reveal molecular determinants of non‐natural substrate specificity
Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic “isoprenol pathways,” which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non‐natural alkyl‐monophospha...
Saved in:
Published in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2024-07, Vol.92 (7), p.808-818 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3724-637a3cb3284d1532d8956ab3afe305dfa3c4d97fdae7a3ad0218f6d22aa24e5d3 |
container_end_page | 818 |
container_issue | 7 |
container_start_page | 808 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 92 |
creator | Johnson, Bryce P. Mandal, Prashant S. Brown, Sara M. Thomas, Leonard M. Singh, Shanteri |
description | Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic “isoprenol pathways,” which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non‐natural alkyl‐monophosphates (alkyl‐Ps) as substrates has hinted at the isoprenol pathways' potential to access novel isoprenoids with potentially useful activities. However, only a handful of IPK crystal structures have been solved to date, and even fewer of these contain non‐natural substrates bound in the active site. The current study sought to elucidate additional ternary complexes bound to non‐natural substrates using the IPK homolog from Thermococcus paralvinellae (TcpIPK). Four such structures were solved, each bound to a different non‐natural alkyl‐P and the phosphoryl donor substrate/product adenosine triphosphate (ATP)/adenosine diphosphate (ADP). As expected, the quaternary, tertiary, and secondary structures of TcpIPK closely resembled those of IPKs published previously, and kinetic analysis of a novel alkyl‐P substrate highlighted the potentially dramatic effects of altering the core scaffold of the natural substrate. Even more interesting, though, was the discovery of a trend correlating the position of two α helices in the active site with the magnitude of an IPK homolog's reaction rate for the natural reaction. Overall, the current structures of TcpIPK highlight the importance of continued structural analysis of the IPKs to better understand and optimize their activity with both natural and non‐natural substrates. |
doi_str_mv | 10.1002/prot.26674 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11147733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063369498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3724-637a3cb3284d1532d8956ab3afe305dfa3c4d97fdae7a3ad0218f6d22aa24e5d3</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EosPAhgdAltggpLT-SRxnhVAFtFKlVmhYWx77hnFx7GAnA7PjEVjxgDwJnk6pgAUrL-65R9ffh9BTSo4pIexkTHE6ZkK09T20oKRrK0J5fR8tiJRtxRvZHKFHOV8TQkTHxUN0xCXnvOvEAv1YQQo67bCJw-jhK2Qce-xyHCFMEHYej5uYx42eAH9yQWfAfYoDXm0gDdFEY-aMR52037oA3mvACbagPR6iBzN7nbCFqcBlOUw39hDDz2_fg57msobzvM5T2vvzCMb1zrhp9xg96LXP8OT2XaIPb9-sTs-qi8t356evLyrDW1ZXgreamzVnsra04czKrhF6zXUPnDS2L8Padm1vNRRQW8Ko7IVlTGtWQ2P5Er06eMd5PYA15dPlJjUmN5RQVNRO_T0JbqM-xq2ilNZtW1Jcohe3hhQ_z5AnNbhs9kkEiHNWrGNNKUk2tKDP_0Gv41zS91lxIjgXXd3JQr08UCbFnBP0d9dQovZ9q33f6qbvAj_78_479HfBBaAH4IvzsPuPSl29v1wdpL8A9da9dg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063369498</pqid></control><display><type>article</type><title>Ternary complexes of isopentenyl phosphate kinase from Thermococcus paralvinellae reveal molecular determinants of non‐natural substrate specificity</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Johnson, Bryce P. ; Mandal, Prashant S. ; Brown, Sara M. ; Thomas, Leonard M. ; Singh, Shanteri</creator><creatorcontrib>Johnson, Bryce P. ; Mandal, Prashant S. ; Brown, Sara M. ; Thomas, Leonard M. ; Singh, Shanteri</creatorcontrib><description>Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic “isoprenol pathways,” which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non‐natural alkyl‐monophosphates (alkyl‐Ps) as substrates has hinted at the isoprenol pathways' potential to access novel isoprenoids with potentially useful activities. However, only a handful of IPK crystal structures have been solved to date, and even fewer of these contain non‐natural substrates bound in the active site. The current study sought to elucidate additional ternary complexes bound to non‐natural substrates using the IPK homolog from Thermococcus paralvinellae (TcpIPK). Four such structures were solved, each bound to a different non‐natural alkyl‐P and the phosphoryl donor substrate/product adenosine triphosphate (ATP)/adenosine diphosphate (ADP). As expected, the quaternary, tertiary, and secondary structures of TcpIPK closely resembled those of IPKs published previously, and kinetic analysis of a novel alkyl‐P substrate highlighted the potentially dramatic effects of altering the core scaffold of the natural substrate. Even more interesting, though, was the discovery of a trend correlating the position of two α helices in the active site with the magnitude of an IPK homolog's reaction rate for the natural reaction. Overall, the current structures of TcpIPK highlight the importance of continued structural analysis of the IPKs to better understand and optimize their activity with both natural and non‐natural substrates.</description><identifier>ISSN: 0887-3585</identifier><identifier>ISSN: 1097-0134</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.26674</identifier><identifier>PMID: 38333996</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adenosine ; Adenosine diphosphate ; Adenosine Diphosphate - chemistry ; Adenosine Diphosphate - metabolism ; Adenosine triphosphate ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Amino Acid Sequence ; Archaeal Proteins - chemistry ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; ATP ; biocatalysis ; Catalytic Domain ; Cloning, Molecular ; Crystallography, X-Ray ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression ; Helices ; hemiterpenes ; Hemiterpenes - chemistry ; Hemiterpenes - metabolism ; Kinases ; Kinetics ; Models, Molecular ; phosphotransferases (phosphate group acceptor) ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Protein Kinases ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Structural analysis ; Substrate Specificity ; Substrates ; Terpenes ; Thermococcus ; Thermococcus - enzymology</subject><ispartof>Proteins, structure, function, and bioinformatics, 2024-07, Vol.92 (7), p.808-818</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3724-637a3cb3284d1532d8956ab3afe305dfa3c4d97fdae7a3ad0218f6d22aa24e5d3</cites><orcidid>0000-0003-0960-4794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38333996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Bryce P.</creatorcontrib><creatorcontrib>Mandal, Prashant S.</creatorcontrib><creatorcontrib>Brown, Sara M.</creatorcontrib><creatorcontrib>Thomas, Leonard M.</creatorcontrib><creatorcontrib>Singh, Shanteri</creatorcontrib><title>Ternary complexes of isopentenyl phosphate kinase from Thermococcus paralvinellae reveal molecular determinants of non‐natural substrate specificity</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic “isoprenol pathways,” which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non‐natural alkyl‐monophosphates (alkyl‐Ps) as substrates has hinted at the isoprenol pathways' potential to access novel isoprenoids with potentially useful activities. However, only a handful of IPK crystal structures have been solved to date, and even fewer of these contain non‐natural substrates bound in the active site. The current study sought to elucidate additional ternary complexes bound to non‐natural substrates using the IPK homolog from Thermococcus paralvinellae (TcpIPK). Four such structures were solved, each bound to a different non‐natural alkyl‐P and the phosphoryl donor substrate/product adenosine triphosphate (ATP)/adenosine diphosphate (ADP). As expected, the quaternary, tertiary, and secondary structures of TcpIPK closely resembled those of IPKs published previously, and kinetic analysis of a novel alkyl‐P substrate highlighted the potentially dramatic effects of altering the core scaffold of the natural substrate. Even more interesting, though, was the discovery of a trend correlating the position of two α helices in the active site with the magnitude of an IPK homolog's reaction rate for the natural reaction. Overall, the current structures of TcpIPK highlight the importance of continued structural analysis of the IPKs to better understand and optimize their activity with both natural and non‐natural substrates.</description><subject>Adenosine</subject><subject>Adenosine diphosphate</subject><subject>Adenosine Diphosphate - chemistry</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Archaeal Proteins - chemistry</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>ATP</subject><subject>biocatalysis</subject><subject>Catalytic Domain</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression</subject><subject>Helices</subject><subject>hemiterpenes</subject><subject>Hemiterpenes - chemistry</subject><subject>Hemiterpenes - metabolism</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>phosphotransferases (phosphate group acceptor)</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Kinases</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Structural analysis</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Terpenes</subject><subject>Thermococcus</subject><subject>Thermococcus - enzymology</subject><issn>0887-3585</issn><issn>1097-0134</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURi0EosPAhgdAltggpLT-SRxnhVAFtFKlVmhYWx77hnFx7GAnA7PjEVjxgDwJnk6pgAUrL-65R9ffh9BTSo4pIexkTHE6ZkK09T20oKRrK0J5fR8tiJRtxRvZHKFHOV8TQkTHxUN0xCXnvOvEAv1YQQo67bCJw-jhK2Qce-xyHCFMEHYej5uYx42eAH9yQWfAfYoDXm0gDdFEY-aMR52037oA3mvACbagPR6iBzN7nbCFqcBlOUw39hDDz2_fg57msobzvM5T2vvzCMb1zrhp9xg96LXP8OT2XaIPb9-sTs-qi8t356evLyrDW1ZXgreamzVnsra04czKrhF6zXUPnDS2L8Padm1vNRRQW8Ko7IVlTGtWQ2P5Er06eMd5PYA15dPlJjUmN5RQVNRO_T0JbqM-xq2ilNZtW1Jcohe3hhQ_z5AnNbhs9kkEiHNWrGNNKUk2tKDP_0Gv41zS91lxIjgXXd3JQr08UCbFnBP0d9dQovZ9q33f6qbvAj_78_479HfBBaAH4IvzsPuPSl29v1wdpL8A9da9dg</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Johnson, Bryce P.</creator><creator>Mandal, Prashant S.</creator><creator>Brown, Sara M.</creator><creator>Thomas, Leonard M.</creator><creator>Singh, Shanteri</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0960-4794</orcidid></search><sort><creationdate>202407</creationdate><title>Ternary complexes of isopentenyl phosphate kinase from Thermococcus paralvinellae reveal molecular determinants of non‐natural substrate specificity</title><author>Johnson, Bryce P. ; Mandal, Prashant S. ; Brown, Sara M. ; Thomas, Leonard M. ; Singh, Shanteri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3724-637a3cb3284d1532d8956ab3afe305dfa3c4d97fdae7a3ad0218f6d22aa24e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenosine</topic><topic>Adenosine diphosphate</topic><topic>Adenosine Diphosphate - chemistry</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Archaeal Proteins - chemistry</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>ATP</topic><topic>biocatalysis</topic><topic>Catalytic Domain</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression</topic><topic>Helices</topic><topic>hemiterpenes</topic><topic>Hemiterpenes - chemistry</topic><topic>Hemiterpenes - metabolism</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>phosphotransferases (phosphate group acceptor)</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Kinases</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Structural analysis</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Terpenes</topic><topic>Thermococcus</topic><topic>Thermococcus - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Bryce P.</creatorcontrib><creatorcontrib>Mandal, Prashant S.</creatorcontrib><creatorcontrib>Brown, Sara M.</creatorcontrib><creatorcontrib>Thomas, Leonard M.</creatorcontrib><creatorcontrib>Singh, Shanteri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Bryce P.</au><au>Mandal, Prashant S.</au><au>Brown, Sara M.</au><au>Thomas, Leonard M.</au><au>Singh, Shanteri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ternary complexes of isopentenyl phosphate kinase from Thermococcus paralvinellae reveal molecular determinants of non‐natural substrate specificity</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2024-07</date><risdate>2024</risdate><volume>92</volume><issue>7</issue><spage>808</spage><epage>818</epage><pages>808-818</pages><issn>0887-3585</issn><issn>1097-0134</issn><eissn>1097-0134</eissn><abstract>Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic “isoprenol pathways,” which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non‐natural alkyl‐monophosphates (alkyl‐Ps) as substrates has hinted at the isoprenol pathways' potential to access novel isoprenoids with potentially useful activities. However, only a handful of IPK crystal structures have been solved to date, and even fewer of these contain non‐natural substrates bound in the active site. The current study sought to elucidate additional ternary complexes bound to non‐natural substrates using the IPK homolog from Thermococcus paralvinellae (TcpIPK). Four such structures were solved, each bound to a different non‐natural alkyl‐P and the phosphoryl donor substrate/product adenosine triphosphate (ATP)/adenosine diphosphate (ADP). As expected, the quaternary, tertiary, and secondary structures of TcpIPK closely resembled those of IPKs published previously, and kinetic analysis of a novel alkyl‐P substrate highlighted the potentially dramatic effects of altering the core scaffold of the natural substrate. Even more interesting, though, was the discovery of a trend correlating the position of two α helices in the active site with the magnitude of an IPK homolog's reaction rate for the natural reaction. Overall, the current structures of TcpIPK highlight the importance of continued structural analysis of the IPKs to better understand and optimize their activity with both natural and non‐natural substrates.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38333996</pmid><doi>10.1002/prot.26674</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0960-4794</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 2024-07, Vol.92 (7), p.808-818 |
issn | 0887-3585 1097-0134 1097-0134 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11147733 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adenosine Adenosine diphosphate Adenosine Diphosphate - chemistry Adenosine Diphosphate - metabolism Adenosine triphosphate Adenosine Triphosphate - chemistry Adenosine Triphosphate - metabolism Amino Acid Sequence Archaeal Proteins - chemistry Archaeal Proteins - genetics Archaeal Proteins - metabolism ATP biocatalysis Catalytic Domain Cloning, Molecular Crystallography, X-Ray Escherichia coli - enzymology Escherichia coli - genetics Escherichia coli - metabolism Gene Expression Helices hemiterpenes Hemiterpenes - chemistry Hemiterpenes - metabolism Kinases Kinetics Models, Molecular phosphotransferases (phosphate group acceptor) Protein Binding Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Protein Interaction Domains and Motifs Protein Kinases Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Structural analysis Substrate Specificity Substrates Terpenes Thermococcus Thermococcus - enzymology |
title | Ternary complexes of isopentenyl phosphate kinase from Thermococcus paralvinellae reveal molecular determinants of non‐natural substrate specificity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ternary%20complexes%20of%20isopentenyl%20phosphate%20kinase%20from%20Thermococcus%20paralvinellae%20reveal%20molecular%20determinants%20of%20non%E2%80%90natural%20substrate%20specificity&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Johnson,%20Bryce%20P.&rft.date=2024-07&rft.volume=92&rft.issue=7&rft.spage=808&rft.epage=818&rft.pages=808-818&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.26674&rft_dat=%3Cproquest_pubme%3E3063369498%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3724-637a3cb3284d1532d8956ab3afe305dfa3c4d97fdae7a3ad0218f6d22aa24e5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3063369498&rft_id=info:pmid/38333996&rfr_iscdi=true |