Loading…

Ternary complexes of isopentenyl phosphate kinase from Thermococcus paralvinellae reveal molecular determinants of non‐natural substrate specificity

Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic “isoprenol pathways,” which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non‐natural alkyl‐monophospha...

Full description

Saved in:
Bibliographic Details
Published in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2024-07, Vol.92 (7), p.808-818
Main Authors: Johnson, Bryce P., Mandal, Prashant S., Brown, Sara M., Thomas, Leonard M., Singh, Shanteri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3724-637a3cb3284d1532d8956ab3afe305dfa3c4d97fdae7a3ad0218f6d22aa24e5d3
container_end_page 818
container_issue 7
container_start_page 808
container_title Proteins, structure, function, and bioinformatics
container_volume 92
creator Johnson, Bryce P.
Mandal, Prashant S.
Brown, Sara M.
Thomas, Leonard M.
Singh, Shanteri
description Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic “isoprenol pathways,” which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non‐natural alkyl‐monophosphates (alkyl‐Ps) as substrates has hinted at the isoprenol pathways' potential to access novel isoprenoids with potentially useful activities. However, only a handful of IPK crystal structures have been solved to date, and even fewer of these contain non‐natural substrates bound in the active site. The current study sought to elucidate additional ternary complexes bound to non‐natural substrates using the IPK homolog from Thermococcus paralvinellae (TcpIPK). Four such structures were solved, each bound to a different non‐natural alkyl‐P and the phosphoryl donor substrate/product adenosine triphosphate (ATP)/adenosine diphosphate (ADP). As expected, the quaternary, tertiary, and secondary structures of TcpIPK closely resembled those of IPKs published previously, and kinetic analysis of a novel alkyl‐P substrate highlighted the potentially dramatic effects of altering the core scaffold of the natural substrate. Even more interesting, though, was the discovery of a trend correlating the position of two α helices in the active site with the magnitude of an IPK homolog's reaction rate for the natural reaction. Overall, the current structures of TcpIPK highlight the importance of continued structural analysis of the IPKs to better understand and optimize their activity with both natural and non‐natural substrates.
doi_str_mv 10.1002/prot.26674
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11147733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063369498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3724-637a3cb3284d1532d8956ab3afe305dfa3c4d97fdae7a3ad0218f6d22aa24e5d3</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EosPAhgdAltggpLT-SRxnhVAFtFKlVmhYWx77hnFx7GAnA7PjEVjxgDwJnk6pgAUrL-65R9ffh9BTSo4pIexkTHE6ZkK09T20oKRrK0J5fR8tiJRtxRvZHKFHOV8TQkTHxUN0xCXnvOvEAv1YQQo67bCJw-jhK2Qce-xyHCFMEHYej5uYx42eAH9yQWfAfYoDXm0gDdFEY-aMR52037oA3mvACbagPR6iBzN7nbCFqcBlOUw39hDDz2_fg57msobzvM5T2vvzCMb1zrhp9xg96LXP8OT2XaIPb9-sTs-qi8t356evLyrDW1ZXgreamzVnsra04czKrhF6zXUPnDS2L8Padm1vNRRQW8Ko7IVlTGtWQ2P5Er06eMd5PYA15dPlJjUmN5RQVNRO_T0JbqM-xq2ilNZtW1Jcohe3hhQ_z5AnNbhs9kkEiHNWrGNNKUk2tKDP_0Gv41zS91lxIjgXXd3JQr08UCbFnBP0d9dQovZ9q33f6qbvAj_78_479HfBBaAH4IvzsPuPSl29v1wdpL8A9da9dg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063369498</pqid></control><display><type>article</type><title>Ternary complexes of isopentenyl phosphate kinase from Thermococcus paralvinellae reveal molecular determinants of non‐natural substrate specificity</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Johnson, Bryce P. ; Mandal, Prashant S. ; Brown, Sara M. ; Thomas, Leonard M. ; Singh, Shanteri</creator><creatorcontrib>Johnson, Bryce P. ; Mandal, Prashant S. ; Brown, Sara M. ; Thomas, Leonard M. ; Singh, Shanteri</creatorcontrib><description>Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic “isoprenol pathways,” which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non‐natural alkyl‐monophosphates (alkyl‐Ps) as substrates has hinted at the isoprenol pathways' potential to access novel isoprenoids with potentially useful activities. However, only a handful of IPK crystal structures have been solved to date, and even fewer of these contain non‐natural substrates bound in the active site. The current study sought to elucidate additional ternary complexes bound to non‐natural substrates using the IPK homolog from Thermococcus paralvinellae (TcpIPK). Four such structures were solved, each bound to a different non‐natural alkyl‐P and the phosphoryl donor substrate/product adenosine triphosphate (ATP)/adenosine diphosphate (ADP). As expected, the quaternary, tertiary, and secondary structures of TcpIPK closely resembled those of IPKs published previously, and kinetic analysis of a novel alkyl‐P substrate highlighted the potentially dramatic effects of altering the core scaffold of the natural substrate. Even more interesting, though, was the discovery of a trend correlating the position of two α helices in the active site with the magnitude of an IPK homolog's reaction rate for the natural reaction. Overall, the current structures of TcpIPK highlight the importance of continued structural analysis of the IPKs to better understand and optimize their activity with both natural and non‐natural substrates.</description><identifier>ISSN: 0887-3585</identifier><identifier>ISSN: 1097-0134</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.26674</identifier><identifier>PMID: 38333996</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adenosine ; Adenosine diphosphate ; Adenosine Diphosphate - chemistry ; Adenosine Diphosphate - metabolism ; Adenosine triphosphate ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Amino Acid Sequence ; Archaeal Proteins - chemistry ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; ATP ; biocatalysis ; Catalytic Domain ; Cloning, Molecular ; Crystallography, X-Ray ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression ; Helices ; hemiterpenes ; Hemiterpenes - chemistry ; Hemiterpenes - metabolism ; Kinases ; Kinetics ; Models, Molecular ; phosphotransferases (phosphate group acceptor) ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Protein Kinases ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Structural analysis ; Substrate Specificity ; Substrates ; Terpenes ; Thermococcus ; Thermococcus - enzymology</subject><ispartof>Proteins, structure, function, and bioinformatics, 2024-07, Vol.92 (7), p.808-818</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3724-637a3cb3284d1532d8956ab3afe305dfa3c4d97fdae7a3ad0218f6d22aa24e5d3</cites><orcidid>0000-0003-0960-4794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38333996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Bryce P.</creatorcontrib><creatorcontrib>Mandal, Prashant S.</creatorcontrib><creatorcontrib>Brown, Sara M.</creatorcontrib><creatorcontrib>Thomas, Leonard M.</creatorcontrib><creatorcontrib>Singh, Shanteri</creatorcontrib><title>Ternary complexes of isopentenyl phosphate kinase from Thermococcus paralvinellae reveal molecular determinants of non‐natural substrate specificity</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic “isoprenol pathways,” which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non‐natural alkyl‐monophosphates (alkyl‐Ps) as substrates has hinted at the isoprenol pathways' potential to access novel isoprenoids with potentially useful activities. However, only a handful of IPK crystal structures have been solved to date, and even fewer of these contain non‐natural substrates bound in the active site. The current study sought to elucidate additional ternary complexes bound to non‐natural substrates using the IPK homolog from Thermococcus paralvinellae (TcpIPK). Four such structures were solved, each bound to a different non‐natural alkyl‐P and the phosphoryl donor substrate/product adenosine triphosphate (ATP)/adenosine diphosphate (ADP). As expected, the quaternary, tertiary, and secondary structures of TcpIPK closely resembled those of IPKs published previously, and kinetic analysis of a novel alkyl‐P substrate highlighted the potentially dramatic effects of altering the core scaffold of the natural substrate. Even more interesting, though, was the discovery of a trend correlating the position of two α helices in the active site with the magnitude of an IPK homolog's reaction rate for the natural reaction. Overall, the current structures of TcpIPK highlight the importance of continued structural analysis of the IPKs to better understand and optimize their activity with both natural and non‐natural substrates.</description><subject>Adenosine</subject><subject>Adenosine diphosphate</subject><subject>Adenosine Diphosphate - chemistry</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Archaeal Proteins - chemistry</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>ATP</subject><subject>biocatalysis</subject><subject>Catalytic Domain</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression</subject><subject>Helices</subject><subject>hemiterpenes</subject><subject>Hemiterpenes - chemistry</subject><subject>Hemiterpenes - metabolism</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>phosphotransferases (phosphate group acceptor)</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Kinases</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Structural analysis</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Terpenes</subject><subject>Thermococcus</subject><subject>Thermococcus - enzymology</subject><issn>0887-3585</issn><issn>1097-0134</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURi0EosPAhgdAltggpLT-SRxnhVAFtFKlVmhYWx77hnFx7GAnA7PjEVjxgDwJnk6pgAUrL-65R9ffh9BTSo4pIexkTHE6ZkK09T20oKRrK0J5fR8tiJRtxRvZHKFHOV8TQkTHxUN0xCXnvOvEAv1YQQo67bCJw-jhK2Qce-xyHCFMEHYej5uYx42eAH9yQWfAfYoDXm0gDdFEY-aMR52037oA3mvACbagPR6iBzN7nbCFqcBlOUw39hDDz2_fg57msobzvM5T2vvzCMb1zrhp9xg96LXP8OT2XaIPb9-sTs-qi8t356evLyrDW1ZXgreamzVnsra04czKrhF6zXUPnDS2L8Padm1vNRRQW8Ko7IVlTGtWQ2P5Er06eMd5PYA15dPlJjUmN5RQVNRO_T0JbqM-xq2ilNZtW1Jcohe3hhQ_z5AnNbhs9kkEiHNWrGNNKUk2tKDP_0Gv41zS91lxIjgXXd3JQr08UCbFnBP0d9dQovZ9q33f6qbvAj_78_479HfBBaAH4IvzsPuPSl29v1wdpL8A9da9dg</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Johnson, Bryce P.</creator><creator>Mandal, Prashant S.</creator><creator>Brown, Sara M.</creator><creator>Thomas, Leonard M.</creator><creator>Singh, Shanteri</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0960-4794</orcidid></search><sort><creationdate>202407</creationdate><title>Ternary complexes of isopentenyl phosphate kinase from Thermococcus paralvinellae reveal molecular determinants of non‐natural substrate specificity</title><author>Johnson, Bryce P. ; Mandal, Prashant S. ; Brown, Sara M. ; Thomas, Leonard M. ; Singh, Shanteri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3724-637a3cb3284d1532d8956ab3afe305dfa3c4d97fdae7a3ad0218f6d22aa24e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenosine</topic><topic>Adenosine diphosphate</topic><topic>Adenosine Diphosphate - chemistry</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Archaeal Proteins - chemistry</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>ATP</topic><topic>biocatalysis</topic><topic>Catalytic Domain</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression</topic><topic>Helices</topic><topic>hemiterpenes</topic><topic>Hemiterpenes - chemistry</topic><topic>Hemiterpenes - metabolism</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>phosphotransferases (phosphate group acceptor)</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Kinases</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Structural analysis</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Terpenes</topic><topic>Thermococcus</topic><topic>Thermococcus - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Bryce P.</creatorcontrib><creatorcontrib>Mandal, Prashant S.</creatorcontrib><creatorcontrib>Brown, Sara M.</creatorcontrib><creatorcontrib>Thomas, Leonard M.</creatorcontrib><creatorcontrib>Singh, Shanteri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Bryce P.</au><au>Mandal, Prashant S.</au><au>Brown, Sara M.</au><au>Thomas, Leonard M.</au><au>Singh, Shanteri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ternary complexes of isopentenyl phosphate kinase from Thermococcus paralvinellae reveal molecular determinants of non‐natural substrate specificity</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2024-07</date><risdate>2024</risdate><volume>92</volume><issue>7</issue><spage>808</spage><epage>818</epage><pages>808-818</pages><issn>0887-3585</issn><issn>1097-0134</issn><eissn>1097-0134</eissn><abstract>Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic “isoprenol pathways,” which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non‐natural alkyl‐monophosphates (alkyl‐Ps) as substrates has hinted at the isoprenol pathways' potential to access novel isoprenoids with potentially useful activities. However, only a handful of IPK crystal structures have been solved to date, and even fewer of these contain non‐natural substrates bound in the active site. The current study sought to elucidate additional ternary complexes bound to non‐natural substrates using the IPK homolog from Thermococcus paralvinellae (TcpIPK). Four such structures were solved, each bound to a different non‐natural alkyl‐P and the phosphoryl donor substrate/product adenosine triphosphate (ATP)/adenosine diphosphate (ADP). As expected, the quaternary, tertiary, and secondary structures of TcpIPK closely resembled those of IPKs published previously, and kinetic analysis of a novel alkyl‐P substrate highlighted the potentially dramatic effects of altering the core scaffold of the natural substrate. Even more interesting, though, was the discovery of a trend correlating the position of two α helices in the active site with the magnitude of an IPK homolog's reaction rate for the natural reaction. Overall, the current structures of TcpIPK highlight the importance of continued structural analysis of the IPKs to better understand and optimize their activity with both natural and non‐natural substrates.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38333996</pmid><doi>10.1002/prot.26674</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0960-4794</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2024-07, Vol.92 (7), p.808-818
issn 0887-3585
1097-0134
1097-0134
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11147733
source Wiley-Blackwell Read & Publish Collection
subjects Adenosine
Adenosine diphosphate
Adenosine Diphosphate - chemistry
Adenosine Diphosphate - metabolism
Adenosine triphosphate
Adenosine Triphosphate - chemistry
Adenosine Triphosphate - metabolism
Amino Acid Sequence
Archaeal Proteins - chemistry
Archaeal Proteins - genetics
Archaeal Proteins - metabolism
ATP
biocatalysis
Catalytic Domain
Cloning, Molecular
Crystallography, X-Ray
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli - metabolism
Gene Expression
Helices
hemiterpenes
Hemiterpenes - chemistry
Hemiterpenes - metabolism
Kinases
Kinetics
Models, Molecular
phosphotransferases (phosphate group acceptor)
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Protein Kinases
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Structural analysis
Substrate Specificity
Substrates
Terpenes
Thermococcus
Thermococcus - enzymology
title Ternary complexes of isopentenyl phosphate kinase from Thermococcus paralvinellae reveal molecular determinants of non‐natural substrate specificity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ternary%20complexes%20of%20isopentenyl%20phosphate%20kinase%20from%20Thermococcus%20paralvinellae%20reveal%20molecular%20determinants%20of%20non%E2%80%90natural%20substrate%20specificity&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Johnson,%20Bryce%20P.&rft.date=2024-07&rft.volume=92&rft.issue=7&rft.spage=808&rft.epage=818&rft.pages=808-818&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.26674&rft_dat=%3Cproquest_pubme%3E3063369498%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3724-637a3cb3284d1532d8956ab3afe305dfa3c4d97fdae7a3ad0218f6d22aa24e5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3063369498&rft_id=info:pmid/38333996&rfr_iscdi=true