Loading…
Temperature dependence of the mutation rate towards antibiotic resistance
Abstract Objectives Environmental conditions can influence mutation rates in bacteria. Fever is a common response to infection that alters the growth conditions of infecting bacteria. Here we examine how a temperature change, such as is associated with fever, affects the mutation rate towards antibi...
Saved in:
Published in: | JAC-antimicrobial resistance 2024-06, Vol.6 (3), p.dlae085 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Objectives
Environmental conditions can influence mutation rates in bacteria. Fever is a common response to infection that alters the growth conditions of infecting bacteria. Here we examine how a temperature change, such as is associated with fever, affects the mutation rate towards antibiotic resistance.
Methods
We used a fluctuation test to assess the mutation rate towards antibiotic resistance in Escherichia coli at two different temperatures: 37°C (normal temperature) and 40°C (fever temperature). We performed this measurement for three different antibiotics with different modes of action: ciprofloxacin, rifampicin and ampicillin.
Results
In all cases, the mutation rate towards antibiotic resistance turned out to be temperature dependent, but in different ways. Fever temperatures led to a reduced mutation rate towards ampicillin resistance and an elevated mutation rate towards ciprofloxacin and rifampicin resistance.
Conclusions
This study shows that the mutation rate towards antibiotic resistance is impacted by a small change in temperature, such as associated with fever. This opens a new avenue to mitigate the emergence of antibiotic resistance by coordinating the choice of an antibiotic with the decision of whether or not to suppress fever when treating a patient. Hence, optimized combinations of antibiotics and fever suppression strategies may be a new weapon in the battle against antibiotic resistance. |
---|---|
ISSN: | 2632-1823 2632-1823 |
DOI: | 10.1093/jacamr/dlae085 |