Loading…
An Exploratory Approach of Clinically Useful Biomarkers of Cvid by Logistic Regression
Despite advancements in genetic and functional studies, the timely diagnosis of common variable immunodeficiency (CVID) remains a significant challenge. This exploratory study was designed to assess the diagnostic performance of a novel panel of biomarkers for CVID, incorporating the sum of κ+λ ligh...
Saved in:
Published in: | Journal of clinical immunology 2024-08, Vol.44 (6), p.143, Article 143 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite advancements in genetic and functional studies, the timely diagnosis of common variable immunodeficiency (CVID) remains a significant challenge. This exploratory study was designed to assess the diagnostic performance of a novel panel of biomarkers for CVID, incorporating the sum of κ+λ light chains, soluble B-cell maturation antigen (sBCMA) levels, switched memory B cells (smB) and the VISUAL score. Comparative analyses utilizing logistic regression were performed against established gold-standard tests, specifically antibody responses. Our research encompassed 88 subjects, comprising 27 CVID, 23 selective IgA deficiency (SIgAD), 20 secondary immunodeficiency (SID) patients and 18 healthy controls. We established the diagnostic accuracy of sBCMA and the sum κ+λ, achieving sensitivity (Se) and specificity (Spe) of 89% and 89%, and 90% and 99%, respectively. Importantly, sBCMA showed strong correlations with all evaluated biomarkers (sum κ+λ, smB cell and VISUAL), whereas the sum κ+λ was uniquely independent from smB cells or VISUAL, suggesting its additional diagnostic value. Through a multivariate tree decision model, specific antibody responses and the sum κ+λ emerged as independent, signature biomarkers for CVID, with the model showcasing an area under the curve (AUC) of 0.946, Se 0.85, and Spe 0.95. This tree-decision model promises to enhance diagnostic efficiency for CVID, underscoring the sum κ+λ as a superior CVID classifier and potential diagnostic criterion within the panel. |
---|---|
ISSN: | 0271-9142 1573-2592 1573-2592 |
DOI: | 10.1007/s10875-024-01746-1 |