Loading…

Utilizing Large Language Models for Enhanced Clinical Trial Matching: A Study on Automation in Patient Screening

Background Clinical trial matching, essential for advancing medical research, involves detailed screening of potential participants to ensure alignment with specific trial requirements. Research staff face challenges due to the high volume of eligible patients and the complexity of varying eligibili...

Full description

Saved in:
Bibliographic Details
Published in:Curēus (Palo Alto, CA) CA), 2024-05, Vol.16 (5), p.e60044-e60044
Main Authors: Beattie, Jacob, Neufeld, Sarah, Yang, Daniel, Chukwuma, Christian, Gul, Ahmed, Desai, Neil, Jiang, Steve, Dohopolski, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Clinical trial matching, essential for advancing medical research, involves detailed screening of potential participants to ensure alignment with specific trial requirements. Research staff face challenges due to the high volume of eligible patients and the complexity of varying eligibility criteria. The traditional manual process, both time-consuming and error-prone, often leads to missed opportunities. Recently, large language models (LLMs), specifically generative pre-trained transformers (GPTs), have become impressive and impactful tools. Utilizing such tools from artificial intelligence (AI) and natural language processing (NLP) may enhance the accuracy and efficiency of this process through automated patient screening against established criteria. Methods Utilizing data from the National NLP Clinical Challenges (n2c2) 2018 Challenge, we utilized 202 longitudinal patient records. These records were annotated by medical professionals and evaluated against 13 selection criteria encompassing various health assessments. Our approach involved embedding medical documents into a vector database to determine relevant document sections and then using an LLM (OpenAI's GPT-3.5 Turbo and GPT-4) in tandem with structured and chain-of-thought prompting techniques for systematic document assessment against the criteria. Misclassified criteria were also examined to identify classification challenges. Results This study achieved an accuracy of 0.81, sensitivity of 0.80, specificity of 0.82, and a micro F1 score of 0.79 using GPT-3.5 Turbo, and an accuracy of 0.87, sensitivity of 0.85, specificity of 0.89, and micro F1 score of 0.86 using GPT-4. Notably, some criteria in the ground truth appeared mislabeled, an issue we couldn't explore further due to insufficient label generation guidelines on the website. Conclusion Our findings underscore the potential of AI and NLP technologies, including LLMs, in the clinical trial matching process. The study demonstrated strong capabilities in identifying eligible patients and minimizing false inclusions. Such automated systems promise to alleviate the workload of research staff and improve clinical trial enrollment, thus accelerating the process and enhancing the overall feasibility of clinical research. Further work is needed to determine the potential of this approach when implemented on real clinical data.
ISSN:2168-8184
2168-8184
DOI:10.7759/cureus.60044