Loading…

Coffee berry borer (Coleoptera: Scolytidae) population dynamics across Hawaii Island's diverse coffee-growing landscape: optimizing location-specific pesticide applications

A major challenge to area-wide management of coffee berry borer (Hypothenemus hampei Ferrari) (Coleoptera: Scolytidae) is understanding how a heterogeneous coffee-growing landscape affects coffee berry borer population dynamics across temporal and spatial scales. We examined coffee phenology, weathe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of economic entomology 2024-04, Vol.117 (3), p.963-972
Main Authors: Johnson, Melissa A., Manoukis, Nicholas C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A major challenge to area-wide management of coffee berry borer (Hypothenemus hampei Ferrari) (Coleoptera: Scolytidae) is understanding how a heterogeneous coffee-growing landscape affects coffee berry borer population dynamics across temporal and spatial scales. We examined coffee phenology, weather, coffee berry borer flight activity, infestation, coffee berry borer position within the fruit, and management across 14 commercial coffee farms from 2016 to 2018 on Hawaii Island to characterize variation among districts and elevations. Here we aim to determine whether the timing of pesticide applications might be optimized based on specific locations. We observed larger populations of coffee berry borer at low-elevation farms and in the Kona district compared to mid- and high-elevation farms and the Ka'u district. Temperature, relative humidity, and rainfall all differed significantly across districts and elevations. We also observed a trend of higher fruit production at low-elevation farms compared to high-elevation farms, and differences in the timing of fruit development. Infestation increased with higher pest pressure and air temperatures and reduced fruit availability early and late in the season. Lastly, the timing and number of management interventions varied among districts and elevations. Combining information on trap catch, infestation, coffee berry borer position, and plant phenology, we present an optimized pesticide spray schedule for each location and find that the number of sprays could be reduced by 33–75% in comparison to the existing integrated pest management recommendations while maintaining effective control. Implementing a coordinated area-wide approach refined by small-scale optimization will lead to improved management of coffee berry borer on individual farms and a reduction in pest pressure across the coffee-growing landscape.
ISSN:0022-0493
1938-291X
DOI:10.1093/jee/toae061