Loading…

Cation Effects on the Adsorbed Intermediates of CO2 Electroreduction Are Systematic and Predictable

The electrode–electrolyte interface, and in particular the nature of the cation, has considerable effects on the activity and product selectivity of the electrochemical reduction of CO2. Therefore, to improve the electrocatalysis of this challenging reaction, it is paramount to ascertain whether cat...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2024-06, Vol.14 (11), p.8814-8822
Main Authors: Sargeant, Elizabeth, Rodriguez, Paramaconi, Calle-Vallejo, Federico
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electrode–electrolyte interface, and in particular the nature of the cation, has considerable effects on the activity and product selectivity of the electrochemical reduction of CO2. Therefore, to improve the electrocatalysis of this challenging reaction, it is paramount to ascertain whether cation effects on adsorbed intermediates are systematic. Here, DFT calculations are used to show that the effects of K+, Na+, and Mg2+, on single carbon CO2 reduction intermediates can either be stabilizing or destabilizing depending on the metal and the adsorbate. Because systematic trends are observed, cation effects can be accurately predicted in simple terms for a wide variety of metals, cations and adsorbed species. These results are then applied to the reduction of CO2 to CO on four different catalytic surfaces (Au, Ag, Cu, Pd) and activation of weak-binding metals is consistently observed by virtue of the stabilization of the key intermediate *COOH.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.4c00727