Loading…

Molecular mechanism of choline and ethanolamine transport in humans

Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily 1 . Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome 2 – 7 . Earlier studies concluded that FLVCR1 may fu...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2024-06, Vol.630 (8016), p.501-508
Main Authors: Ri, Keiken, Weng, Tsai-Hsuan, Claveras Cabezudo, Ainara, Jösting, Wiebke, Zhang, Yu, Bazzone, Andre, Leong, Nancy C. P., Welsch, Sonja, Doty, Raymond T., Gursu, Gonca, Lim, Tiffany Jia Ying, Schmidt, Sarah Luise, Abkowitz, Janis L., Hummer, Gerhard, Wu, Di, Nguyen, Long N., Safarian, Schara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93
cites cdi_FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93
container_end_page 508
container_issue 8016
container_start_page 501
container_title Nature (London)
container_volume 630
creator Ri, Keiken
Weng, Tsai-Hsuan
Claveras Cabezudo, Ainara
Jösting, Wiebke
Zhang, Yu
Bazzone, Andre
Leong, Nancy C. P.
Welsch, Sonja
Doty, Raymond T.
Gursu, Gonca
Lim, Tiffany Jia Ying
Schmidt, Sarah Luise
Abkowitz, Janis L.
Hummer, Gerhard
Wu, Di
Nguyen, Long N.
Safarian, Schara
description Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily 1 . Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome 2 – 7 . Earlier studies concluded that FLVCR1 may function as a haem exporter 8 – 12 , whereas FLVCR2 was suggested to act as a haem importer 13 , yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters 14 – 16 . Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation–π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle. Structural analysis of the human choline and ethanolamine transporters FLVCR1 and FLVCR2 clarifies the mechanisms of transport, the conformational dynamics of these proteins and the disease-associated mutations that interfere with these processes.
doi_str_mv 10.1038/s41586-024-07444-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11168923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059254857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhi0EIiHwB3pAK3HpZdvx19o5VVXUL4mKC5wtrzObbLRrp_YuEv--Dgkp5cBp5JlnXr-jl5APFD5R4PpzElTqqgQmSlBCiFKdkCkVqipFpdUpmQIwXYLm1YRcpLQBAEmVOCcTrpXSFGBKFr9Dh27sbCx6dGvr29QXoSncOnStx8L6ZYFD7ofO9rvGEK1P2xCHovXFeuzz65KcNbZLeHWoM_Lw_dv94md5e_fj1-LrbemEkkNpbaNF5WxDa6mFlRUyAfOaV8sl5TXlDVrUrlaaAc82OatpI4ELzRQTiHM-I1_2utux7nHp0GczndnGtrfxyQTbmv8nvl2bVXg0lNJKzxnPCh8PCjH8GTENpm-Tw66zHsOYDAc5Z1JoqTJ68wbdhDH6fF-mFABnWrJMsT3lYkgpYnN0Q8HsQjL7kEwOyTyHZHbS16_vOK68pJIBvgdSHvkVxn9_vyP7F9w8nR0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070032852</pqid></control><display><type>article</type><title>Molecular mechanism of choline and ethanolamine transport in humans</title><source>Nature</source><creator>Ri, Keiken ; Weng, Tsai-Hsuan ; Claveras Cabezudo, Ainara ; Jösting, Wiebke ; Zhang, Yu ; Bazzone, Andre ; Leong, Nancy C. P. ; Welsch, Sonja ; Doty, Raymond T. ; Gursu, Gonca ; Lim, Tiffany Jia Ying ; Schmidt, Sarah Luise ; Abkowitz, Janis L. ; Hummer, Gerhard ; Wu, Di ; Nguyen, Long N. ; Safarian, Schara</creator><creatorcontrib>Ri, Keiken ; Weng, Tsai-Hsuan ; Claveras Cabezudo, Ainara ; Jösting, Wiebke ; Zhang, Yu ; Bazzone, Andre ; Leong, Nancy C. P. ; Welsch, Sonja ; Doty, Raymond T. ; Gursu, Gonca ; Lim, Tiffany Jia Ying ; Schmidt, Sarah Luise ; Abkowitz, Janis L. ; Hummer, Gerhard ; Wu, Di ; Nguyen, Long N. ; Safarian, Schara</creatorcontrib><description>Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily 1 . Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome 2 – 7 . Earlier studies concluded that FLVCR1 may function as a haem exporter 8 – 12 , whereas FLVCR2 was suggested to act as a haem importer 13 , yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters 14 – 16 . Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation–π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle. Structural analysis of the human choline and ethanolamine transporters FLVCR1 and FLVCR2 clarifies the mechanisms of transport, the conformational dynamics of these proteins and the disease-associated mutations that interfere with these processes.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07444-7</identifier><identifier>PMID: 38778100</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/114/2397 ; 631/45/612/1237 ; 631/535/1258/1259 ; Binding Sites ; Biological Transport ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Choline ; Choline - chemistry ; Choline - metabolism ; Ethanolamine ; Ethanolamine - chemistry ; Ethanolamine - metabolism ; Haem ; Humanities and Social Sciences ; Humans ; Kinases ; Leukemia ; Ligands ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Models, Molecular ; Molecular modelling ; multidisciplinary ; Mutation ; Physiology ; Protein Conformation ; Protein transport ; Proteins ; Receptors, Virus - chemistry ; Receptors, Virus - metabolism ; Science ; Science (multidisciplinary) ; Sodium ; Subgroups ; Substrate Specificity ; Substrates ; Translocation ; Tryptophan ; Tryptophan - chemistry ; Tryptophan - metabolism ; Tyrosine ; Tyrosine - chemistry ; Tyrosine - metabolism</subject><ispartof>Nature (London), 2024-06, Vol.630 (8016), p.501-508</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Jun 13, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93</citedby><cites>FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93</cites><orcidid>0009-0004-3818-8675 ; 0000-0003-1389-0199 ; 0000-0002-9857-2239 ; 0000-0002-3708-6384 ; 0000-0002-0232-1612 ; 0000-0001-7768-746X ; 0000-0002-5288-6806 ; 0000-0002-6049-6664 ; 0000-0002-2419-3519 ; 0000-0002-9312-8622 ; 0000-0003-1400-4929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38778100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ri, Keiken</creatorcontrib><creatorcontrib>Weng, Tsai-Hsuan</creatorcontrib><creatorcontrib>Claveras Cabezudo, Ainara</creatorcontrib><creatorcontrib>Jösting, Wiebke</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Bazzone, Andre</creatorcontrib><creatorcontrib>Leong, Nancy C. P.</creatorcontrib><creatorcontrib>Welsch, Sonja</creatorcontrib><creatorcontrib>Doty, Raymond T.</creatorcontrib><creatorcontrib>Gursu, Gonca</creatorcontrib><creatorcontrib>Lim, Tiffany Jia Ying</creatorcontrib><creatorcontrib>Schmidt, Sarah Luise</creatorcontrib><creatorcontrib>Abkowitz, Janis L.</creatorcontrib><creatorcontrib>Hummer, Gerhard</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Nguyen, Long N.</creatorcontrib><creatorcontrib>Safarian, Schara</creatorcontrib><title>Molecular mechanism of choline and ethanolamine transport in humans</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily 1 . Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome 2 – 7 . Earlier studies concluded that FLVCR1 may function as a haem exporter 8 – 12 , whereas FLVCR2 was suggested to act as a haem importer 13 , yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters 14 – 16 . Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation–π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle. Structural analysis of the human choline and ethanolamine transporters FLVCR1 and FLVCR2 clarifies the mechanisms of transport, the conformational dynamics of these proteins and the disease-associated mutations that interfere with these processes.</description><subject>101/28</subject><subject>631/114/2397</subject><subject>631/45/612/1237</subject><subject>631/535/1258/1259</subject><subject>Binding Sites</subject><subject>Biological Transport</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Choline</subject><subject>Choline - chemistry</subject><subject>Choline - metabolism</subject><subject>Ethanolamine</subject><subject>Ethanolamine - chemistry</subject><subject>Ethanolamine - metabolism</subject><subject>Haem</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Ligands</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Physiology</subject><subject>Protein Conformation</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Receptors, Virus - chemistry</subject><subject>Receptors, Virus - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium</subject><subject>Subgroups</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Translocation</subject><subject>Tryptophan</subject><subject>Tryptophan - chemistry</subject><subject>Tryptophan - metabolism</subject><subject>Tyrosine</subject><subject>Tyrosine - chemistry</subject><subject>Tyrosine - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PGzEQhi0EIiHwB3pAK3HpZdvx19o5VVXUL4mKC5wtrzObbLRrp_YuEv--Dgkp5cBp5JlnXr-jl5APFD5R4PpzElTqqgQmSlBCiFKdkCkVqipFpdUpmQIwXYLm1YRcpLQBAEmVOCcTrpXSFGBKFr9Dh27sbCx6dGvr29QXoSncOnStx8L6ZYFD7ofO9rvGEK1P2xCHovXFeuzz65KcNbZLeHWoM_Lw_dv94md5e_fj1-LrbemEkkNpbaNF5WxDa6mFlRUyAfOaV8sl5TXlDVrUrlaaAc82OatpI4ELzRQTiHM-I1_2utux7nHp0GczndnGtrfxyQTbmv8nvl2bVXg0lNJKzxnPCh8PCjH8GTENpm-Tw66zHsOYDAc5Z1JoqTJ68wbdhDH6fF-mFABnWrJMsT3lYkgpYnN0Q8HsQjL7kEwOyTyHZHbS16_vOK68pJIBvgdSHvkVxn9_vyP7F9w8nR0</recordid><startdate>20240613</startdate><enddate>20240613</enddate><creator>Ri, Keiken</creator><creator>Weng, Tsai-Hsuan</creator><creator>Claveras Cabezudo, Ainara</creator><creator>Jösting, Wiebke</creator><creator>Zhang, Yu</creator><creator>Bazzone, Andre</creator><creator>Leong, Nancy C. P.</creator><creator>Welsch, Sonja</creator><creator>Doty, Raymond T.</creator><creator>Gursu, Gonca</creator><creator>Lim, Tiffany Jia Ying</creator><creator>Schmidt, Sarah Luise</creator><creator>Abkowitz, Janis L.</creator><creator>Hummer, Gerhard</creator><creator>Wu, Di</creator><creator>Nguyen, Long N.</creator><creator>Safarian, Schara</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0004-3818-8675</orcidid><orcidid>https://orcid.org/0000-0003-1389-0199</orcidid><orcidid>https://orcid.org/0000-0002-9857-2239</orcidid><orcidid>https://orcid.org/0000-0002-3708-6384</orcidid><orcidid>https://orcid.org/0000-0002-0232-1612</orcidid><orcidid>https://orcid.org/0000-0001-7768-746X</orcidid><orcidid>https://orcid.org/0000-0002-5288-6806</orcidid><orcidid>https://orcid.org/0000-0002-6049-6664</orcidid><orcidid>https://orcid.org/0000-0002-2419-3519</orcidid><orcidid>https://orcid.org/0000-0002-9312-8622</orcidid><orcidid>https://orcid.org/0000-0003-1400-4929</orcidid></search><sort><creationdate>20240613</creationdate><title>Molecular mechanism of choline and ethanolamine transport in humans</title><author>Ri, Keiken ; Weng, Tsai-Hsuan ; Claveras Cabezudo, Ainara ; Jösting, Wiebke ; Zhang, Yu ; Bazzone, Andre ; Leong, Nancy C. P. ; Welsch, Sonja ; Doty, Raymond T. ; Gursu, Gonca ; Lim, Tiffany Jia Ying ; Schmidt, Sarah Luise ; Abkowitz, Janis L. ; Hummer, Gerhard ; Wu, Di ; Nguyen, Long N. ; Safarian, Schara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>101/28</topic><topic>631/114/2397</topic><topic>631/45/612/1237</topic><topic>631/535/1258/1259</topic><topic>Binding Sites</topic><topic>Biological Transport</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Choline</topic><topic>Choline - chemistry</topic><topic>Choline - metabolism</topic><topic>Ethanolamine</topic><topic>Ethanolamine - chemistry</topic><topic>Ethanolamine - metabolism</topic><topic>Haem</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Ligands</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Physiology</topic><topic>Protein Conformation</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Receptors, Virus - chemistry</topic><topic>Receptors, Virus - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium</topic><topic>Subgroups</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Translocation</topic><topic>Tryptophan</topic><topic>Tryptophan - chemistry</topic><topic>Tryptophan - metabolism</topic><topic>Tyrosine</topic><topic>Tyrosine - chemistry</topic><topic>Tyrosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ri, Keiken</creatorcontrib><creatorcontrib>Weng, Tsai-Hsuan</creatorcontrib><creatorcontrib>Claveras Cabezudo, Ainara</creatorcontrib><creatorcontrib>Jösting, Wiebke</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Bazzone, Andre</creatorcontrib><creatorcontrib>Leong, Nancy C. P.</creatorcontrib><creatorcontrib>Welsch, Sonja</creatorcontrib><creatorcontrib>Doty, Raymond T.</creatorcontrib><creatorcontrib>Gursu, Gonca</creatorcontrib><creatorcontrib>Lim, Tiffany Jia Ying</creatorcontrib><creatorcontrib>Schmidt, Sarah Luise</creatorcontrib><creatorcontrib>Abkowitz, Janis L.</creatorcontrib><creatorcontrib>Hummer, Gerhard</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Nguyen, Long N.</creatorcontrib><creatorcontrib>Safarian, Schara</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ri, Keiken</au><au>Weng, Tsai-Hsuan</au><au>Claveras Cabezudo, Ainara</au><au>Jösting, Wiebke</au><au>Zhang, Yu</au><au>Bazzone, Andre</au><au>Leong, Nancy C. P.</au><au>Welsch, Sonja</au><au>Doty, Raymond T.</au><au>Gursu, Gonca</au><au>Lim, Tiffany Jia Ying</au><au>Schmidt, Sarah Luise</au><au>Abkowitz, Janis L.</au><au>Hummer, Gerhard</au><au>Wu, Di</au><au>Nguyen, Long N.</au><au>Safarian, Schara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanism of choline and ethanolamine transport in humans</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-06-13</date><risdate>2024</risdate><volume>630</volume><issue>8016</issue><spage>501</spage><epage>508</epage><pages>501-508</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily 1 . Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome 2 – 7 . Earlier studies concluded that FLVCR1 may function as a haem exporter 8 – 12 , whereas FLVCR2 was suggested to act as a haem importer 13 , yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters 14 – 16 . Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation–π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle. Structural analysis of the human choline and ethanolamine transporters FLVCR1 and FLVCR2 clarifies the mechanisms of transport, the conformational dynamics of these proteins and the disease-associated mutations that interfere with these processes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38778100</pmid><doi>10.1038/s41586-024-07444-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0004-3818-8675</orcidid><orcidid>https://orcid.org/0000-0003-1389-0199</orcidid><orcidid>https://orcid.org/0000-0002-9857-2239</orcidid><orcidid>https://orcid.org/0000-0002-3708-6384</orcidid><orcidid>https://orcid.org/0000-0002-0232-1612</orcidid><orcidid>https://orcid.org/0000-0001-7768-746X</orcidid><orcidid>https://orcid.org/0000-0002-5288-6806</orcidid><orcidid>https://orcid.org/0000-0002-6049-6664</orcidid><orcidid>https://orcid.org/0000-0002-2419-3519</orcidid><orcidid>https://orcid.org/0000-0002-9312-8622</orcidid><orcidid>https://orcid.org/0000-0003-1400-4929</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-06, Vol.630 (8016), p.501-508
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11168923
source Nature
subjects 101/28
631/114/2397
631/45/612/1237
631/535/1258/1259
Binding Sites
Biological Transport
Cell Membrane - chemistry
Cell Membrane - metabolism
Choline
Choline - chemistry
Choline - metabolism
Ethanolamine
Ethanolamine - chemistry
Ethanolamine - metabolism
Haem
Humanities and Social Sciences
Humans
Kinases
Leukemia
Ligands
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Models, Molecular
Molecular modelling
multidisciplinary
Mutation
Physiology
Protein Conformation
Protein transport
Proteins
Receptors, Virus - chemistry
Receptors, Virus - metabolism
Science
Science (multidisciplinary)
Sodium
Subgroups
Substrate Specificity
Substrates
Translocation
Tryptophan
Tryptophan - chemistry
Tryptophan - metabolism
Tyrosine
Tyrosine - chemistry
Tyrosine - metabolism
title Molecular mechanism of choline and ethanolamine transport in humans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanism%20of%20choline%20and%20ethanolamine%20transport%20in%20humans&rft.jtitle=Nature%20(London)&rft.au=Ri,%20Keiken&rft.date=2024-06-13&rft.volume=630&rft.issue=8016&rft.spage=501&rft.epage=508&rft.pages=501-508&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07444-7&rft_dat=%3Cproquest_pubme%3E3059254857%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070032852&rft_id=info:pmid/38778100&rfr_iscdi=true