Loading…
Molecular mechanism of choline and ethanolamine transport in humans
Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily 1 . Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome 2 – 7 . Earlier studies concluded that FLVCR1 may fu...
Saved in:
Published in: | Nature (London) 2024-06, Vol.630 (8016), p.501-508 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93 |
container_end_page | 508 |
container_issue | 8016 |
container_start_page | 501 |
container_title | Nature (London) |
container_volume | 630 |
creator | Ri, Keiken Weng, Tsai-Hsuan Claveras Cabezudo, Ainara Jösting, Wiebke Zhang, Yu Bazzone, Andre Leong, Nancy C. P. Welsch, Sonja Doty, Raymond T. Gursu, Gonca Lim, Tiffany Jia Ying Schmidt, Sarah Luise Abkowitz, Janis L. Hummer, Gerhard Wu, Di Nguyen, Long N. Safarian, Schara |
description | Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily
1
. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome
2
–
7
. Earlier studies concluded that FLVCR1 may function as a haem exporter
8
–
12
, whereas FLVCR2 was suggested to act as a haem importer
13
, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters
14
–
16
. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation–π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.
Structural analysis of the human choline and ethanolamine transporters FLVCR1 and FLVCR2 clarifies the mechanisms of transport, the conformational dynamics of these proteins and the disease-associated mutations that interfere with these processes. |
doi_str_mv | 10.1038/s41586-024-07444-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11168923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059254857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhi0EIiHwB3pAK3HpZdvx19o5VVXUL4mKC5wtrzObbLRrp_YuEv--Dgkp5cBp5JlnXr-jl5APFD5R4PpzElTqqgQmSlBCiFKdkCkVqipFpdUpmQIwXYLm1YRcpLQBAEmVOCcTrpXSFGBKFr9Dh27sbCx6dGvr29QXoSncOnStx8L6ZYFD7ofO9rvGEK1P2xCHovXFeuzz65KcNbZLeHWoM_Lw_dv94md5e_fj1-LrbemEkkNpbaNF5WxDa6mFlRUyAfOaV8sl5TXlDVrUrlaaAc82OatpI4ELzRQTiHM-I1_2utux7nHp0GczndnGtrfxyQTbmv8nvl2bVXg0lNJKzxnPCh8PCjH8GTENpm-Tw66zHsOYDAc5Z1JoqTJ68wbdhDH6fF-mFABnWrJMsT3lYkgpYnN0Q8HsQjL7kEwOyTyHZHbS16_vOK68pJIBvgdSHvkVxn9_vyP7F9w8nR0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070032852</pqid></control><display><type>article</type><title>Molecular mechanism of choline and ethanolamine transport in humans</title><source>Nature</source><creator>Ri, Keiken ; Weng, Tsai-Hsuan ; Claveras Cabezudo, Ainara ; Jösting, Wiebke ; Zhang, Yu ; Bazzone, Andre ; Leong, Nancy C. P. ; Welsch, Sonja ; Doty, Raymond T. ; Gursu, Gonca ; Lim, Tiffany Jia Ying ; Schmidt, Sarah Luise ; Abkowitz, Janis L. ; Hummer, Gerhard ; Wu, Di ; Nguyen, Long N. ; Safarian, Schara</creator><creatorcontrib>Ri, Keiken ; Weng, Tsai-Hsuan ; Claveras Cabezudo, Ainara ; Jösting, Wiebke ; Zhang, Yu ; Bazzone, Andre ; Leong, Nancy C. P. ; Welsch, Sonja ; Doty, Raymond T. ; Gursu, Gonca ; Lim, Tiffany Jia Ying ; Schmidt, Sarah Luise ; Abkowitz, Janis L. ; Hummer, Gerhard ; Wu, Di ; Nguyen, Long N. ; Safarian, Schara</creatorcontrib><description>Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily
1
. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome
2
–
7
. Earlier studies concluded that FLVCR1 may function as a haem exporter
8
–
12
, whereas FLVCR2 was suggested to act as a haem importer
13
, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters
14
–
16
. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation–π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.
Structural analysis of the human choline and ethanolamine transporters FLVCR1 and FLVCR2 clarifies the mechanisms of transport, the conformational dynamics of these proteins and the disease-associated mutations that interfere with these processes.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07444-7</identifier><identifier>PMID: 38778100</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/114/2397 ; 631/45/612/1237 ; 631/535/1258/1259 ; Binding Sites ; Biological Transport ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Choline ; Choline - chemistry ; Choline - metabolism ; Ethanolamine ; Ethanolamine - chemistry ; Ethanolamine - metabolism ; Haem ; Humanities and Social Sciences ; Humans ; Kinases ; Leukemia ; Ligands ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Models, Molecular ; Molecular modelling ; multidisciplinary ; Mutation ; Physiology ; Protein Conformation ; Protein transport ; Proteins ; Receptors, Virus - chemistry ; Receptors, Virus - metabolism ; Science ; Science (multidisciplinary) ; Sodium ; Subgroups ; Substrate Specificity ; Substrates ; Translocation ; Tryptophan ; Tryptophan - chemistry ; Tryptophan - metabolism ; Tyrosine ; Tyrosine - chemistry ; Tyrosine - metabolism</subject><ispartof>Nature (London), 2024-06, Vol.630 (8016), p.501-508</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Jun 13, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93</citedby><cites>FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93</cites><orcidid>0009-0004-3818-8675 ; 0000-0003-1389-0199 ; 0000-0002-9857-2239 ; 0000-0002-3708-6384 ; 0000-0002-0232-1612 ; 0000-0001-7768-746X ; 0000-0002-5288-6806 ; 0000-0002-6049-6664 ; 0000-0002-2419-3519 ; 0000-0002-9312-8622 ; 0000-0003-1400-4929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38778100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ri, Keiken</creatorcontrib><creatorcontrib>Weng, Tsai-Hsuan</creatorcontrib><creatorcontrib>Claveras Cabezudo, Ainara</creatorcontrib><creatorcontrib>Jösting, Wiebke</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Bazzone, Andre</creatorcontrib><creatorcontrib>Leong, Nancy C. P.</creatorcontrib><creatorcontrib>Welsch, Sonja</creatorcontrib><creatorcontrib>Doty, Raymond T.</creatorcontrib><creatorcontrib>Gursu, Gonca</creatorcontrib><creatorcontrib>Lim, Tiffany Jia Ying</creatorcontrib><creatorcontrib>Schmidt, Sarah Luise</creatorcontrib><creatorcontrib>Abkowitz, Janis L.</creatorcontrib><creatorcontrib>Hummer, Gerhard</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Nguyen, Long N.</creatorcontrib><creatorcontrib>Safarian, Schara</creatorcontrib><title>Molecular mechanism of choline and ethanolamine transport in humans</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily
1
. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome
2
–
7
. Earlier studies concluded that FLVCR1 may function as a haem exporter
8
–
12
, whereas FLVCR2 was suggested to act as a haem importer
13
, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters
14
–
16
. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation–π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.
Structural analysis of the human choline and ethanolamine transporters FLVCR1 and FLVCR2 clarifies the mechanisms of transport, the conformational dynamics of these proteins and the disease-associated mutations that interfere with these processes.</description><subject>101/28</subject><subject>631/114/2397</subject><subject>631/45/612/1237</subject><subject>631/535/1258/1259</subject><subject>Binding Sites</subject><subject>Biological Transport</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Choline</subject><subject>Choline - chemistry</subject><subject>Choline - metabolism</subject><subject>Ethanolamine</subject><subject>Ethanolamine - chemistry</subject><subject>Ethanolamine - metabolism</subject><subject>Haem</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Ligands</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Physiology</subject><subject>Protein Conformation</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Receptors, Virus - chemistry</subject><subject>Receptors, Virus - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium</subject><subject>Subgroups</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Translocation</subject><subject>Tryptophan</subject><subject>Tryptophan - chemistry</subject><subject>Tryptophan - metabolism</subject><subject>Tyrosine</subject><subject>Tyrosine - chemistry</subject><subject>Tyrosine - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PGzEQhi0EIiHwB3pAK3HpZdvx19o5VVXUL4mKC5wtrzObbLRrp_YuEv--Dgkp5cBp5JlnXr-jl5APFD5R4PpzElTqqgQmSlBCiFKdkCkVqipFpdUpmQIwXYLm1YRcpLQBAEmVOCcTrpXSFGBKFr9Dh27sbCx6dGvr29QXoSncOnStx8L6ZYFD7ofO9rvGEK1P2xCHovXFeuzz65KcNbZLeHWoM_Lw_dv94md5e_fj1-LrbemEkkNpbaNF5WxDa6mFlRUyAfOaV8sl5TXlDVrUrlaaAc82OatpI4ELzRQTiHM-I1_2utux7nHp0GczndnGtrfxyQTbmv8nvl2bVXg0lNJKzxnPCh8PCjH8GTENpm-Tw66zHsOYDAc5Z1JoqTJ68wbdhDH6fF-mFABnWrJMsT3lYkgpYnN0Q8HsQjL7kEwOyTyHZHbS16_vOK68pJIBvgdSHvkVxn9_vyP7F9w8nR0</recordid><startdate>20240613</startdate><enddate>20240613</enddate><creator>Ri, Keiken</creator><creator>Weng, Tsai-Hsuan</creator><creator>Claveras Cabezudo, Ainara</creator><creator>Jösting, Wiebke</creator><creator>Zhang, Yu</creator><creator>Bazzone, Andre</creator><creator>Leong, Nancy C. P.</creator><creator>Welsch, Sonja</creator><creator>Doty, Raymond T.</creator><creator>Gursu, Gonca</creator><creator>Lim, Tiffany Jia Ying</creator><creator>Schmidt, Sarah Luise</creator><creator>Abkowitz, Janis L.</creator><creator>Hummer, Gerhard</creator><creator>Wu, Di</creator><creator>Nguyen, Long N.</creator><creator>Safarian, Schara</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0004-3818-8675</orcidid><orcidid>https://orcid.org/0000-0003-1389-0199</orcidid><orcidid>https://orcid.org/0000-0002-9857-2239</orcidid><orcidid>https://orcid.org/0000-0002-3708-6384</orcidid><orcidid>https://orcid.org/0000-0002-0232-1612</orcidid><orcidid>https://orcid.org/0000-0001-7768-746X</orcidid><orcidid>https://orcid.org/0000-0002-5288-6806</orcidid><orcidid>https://orcid.org/0000-0002-6049-6664</orcidid><orcidid>https://orcid.org/0000-0002-2419-3519</orcidid><orcidid>https://orcid.org/0000-0002-9312-8622</orcidid><orcidid>https://orcid.org/0000-0003-1400-4929</orcidid></search><sort><creationdate>20240613</creationdate><title>Molecular mechanism of choline and ethanolamine transport in humans</title><author>Ri, Keiken ; Weng, Tsai-Hsuan ; Claveras Cabezudo, Ainara ; Jösting, Wiebke ; Zhang, Yu ; Bazzone, Andre ; Leong, Nancy C. P. ; Welsch, Sonja ; Doty, Raymond T. ; Gursu, Gonca ; Lim, Tiffany Jia Ying ; Schmidt, Sarah Luise ; Abkowitz, Janis L. ; Hummer, Gerhard ; Wu, Di ; Nguyen, Long N. ; Safarian, Schara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>101/28</topic><topic>631/114/2397</topic><topic>631/45/612/1237</topic><topic>631/535/1258/1259</topic><topic>Binding Sites</topic><topic>Biological Transport</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Choline</topic><topic>Choline - chemistry</topic><topic>Choline - metabolism</topic><topic>Ethanolamine</topic><topic>Ethanolamine - chemistry</topic><topic>Ethanolamine - metabolism</topic><topic>Haem</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Ligands</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Physiology</topic><topic>Protein Conformation</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Receptors, Virus - chemistry</topic><topic>Receptors, Virus - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium</topic><topic>Subgroups</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Translocation</topic><topic>Tryptophan</topic><topic>Tryptophan - chemistry</topic><topic>Tryptophan - metabolism</topic><topic>Tyrosine</topic><topic>Tyrosine - chemistry</topic><topic>Tyrosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ri, Keiken</creatorcontrib><creatorcontrib>Weng, Tsai-Hsuan</creatorcontrib><creatorcontrib>Claveras Cabezudo, Ainara</creatorcontrib><creatorcontrib>Jösting, Wiebke</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Bazzone, Andre</creatorcontrib><creatorcontrib>Leong, Nancy C. P.</creatorcontrib><creatorcontrib>Welsch, Sonja</creatorcontrib><creatorcontrib>Doty, Raymond T.</creatorcontrib><creatorcontrib>Gursu, Gonca</creatorcontrib><creatorcontrib>Lim, Tiffany Jia Ying</creatorcontrib><creatorcontrib>Schmidt, Sarah Luise</creatorcontrib><creatorcontrib>Abkowitz, Janis L.</creatorcontrib><creatorcontrib>Hummer, Gerhard</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Nguyen, Long N.</creatorcontrib><creatorcontrib>Safarian, Schara</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ri, Keiken</au><au>Weng, Tsai-Hsuan</au><au>Claveras Cabezudo, Ainara</au><au>Jösting, Wiebke</au><au>Zhang, Yu</au><au>Bazzone, Andre</au><au>Leong, Nancy C. P.</au><au>Welsch, Sonja</au><au>Doty, Raymond T.</au><au>Gursu, Gonca</au><au>Lim, Tiffany Jia Ying</au><au>Schmidt, Sarah Luise</au><au>Abkowitz, Janis L.</au><au>Hummer, Gerhard</au><au>Wu, Di</au><au>Nguyen, Long N.</au><au>Safarian, Schara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanism of choline and ethanolamine transport in humans</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-06-13</date><risdate>2024</risdate><volume>630</volume><issue>8016</issue><spage>501</spage><epage>508</epage><pages>501-508</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily
1
. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome
2
–
7
. Earlier studies concluded that FLVCR1 may function as a haem exporter
8
–
12
, whereas FLVCR2 was suggested to act as a haem importer
13
, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters
14
–
16
. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation–π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.
Structural analysis of the human choline and ethanolamine transporters FLVCR1 and FLVCR2 clarifies the mechanisms of transport, the conformational dynamics of these proteins and the disease-associated mutations that interfere with these processes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38778100</pmid><doi>10.1038/s41586-024-07444-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0004-3818-8675</orcidid><orcidid>https://orcid.org/0000-0003-1389-0199</orcidid><orcidid>https://orcid.org/0000-0002-9857-2239</orcidid><orcidid>https://orcid.org/0000-0002-3708-6384</orcidid><orcidid>https://orcid.org/0000-0002-0232-1612</orcidid><orcidid>https://orcid.org/0000-0001-7768-746X</orcidid><orcidid>https://orcid.org/0000-0002-5288-6806</orcidid><orcidid>https://orcid.org/0000-0002-6049-6664</orcidid><orcidid>https://orcid.org/0000-0002-2419-3519</orcidid><orcidid>https://orcid.org/0000-0002-9312-8622</orcidid><orcidid>https://orcid.org/0000-0003-1400-4929</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-06, Vol.630 (8016), p.501-508 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11168923 |
source | Nature |
subjects | 101/28 631/114/2397 631/45/612/1237 631/535/1258/1259 Binding Sites Biological Transport Cell Membrane - chemistry Cell Membrane - metabolism Choline Choline - chemistry Choline - metabolism Ethanolamine Ethanolamine - chemistry Ethanolamine - metabolism Haem Humanities and Social Sciences Humans Kinases Leukemia Ligands Membrane Transport Proteins - chemistry Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Models, Molecular Molecular modelling multidisciplinary Mutation Physiology Protein Conformation Protein transport Proteins Receptors, Virus - chemistry Receptors, Virus - metabolism Science Science (multidisciplinary) Sodium Subgroups Substrate Specificity Substrates Translocation Tryptophan Tryptophan - chemistry Tryptophan - metabolism Tyrosine Tyrosine - chemistry Tyrosine - metabolism |
title | Molecular mechanism of choline and ethanolamine transport in humans |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanism%20of%20choline%20and%20ethanolamine%20transport%20in%20humans&rft.jtitle=Nature%20(London)&rft.au=Ri,%20Keiken&rft.date=2024-06-13&rft.volume=630&rft.issue=8016&rft.spage=501&rft.epage=508&rft.pages=501-508&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07444-7&rft_dat=%3Cproquest_pubme%3E3059254857%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-aaf846caf1b584a56e2409b36dd13b13feae8cb7820317432b1f503482724ee93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070032852&rft_id=info:pmid/38778100&rfr_iscdi=true |