Loading…

Integrating Spatial and Morphological Characteristics into Melanoma Prognosis: A Computational Approach

In this study, the prognostic value of cellular morphology and spatial configurations in melanoma has been examined, aiming to complement traditional prognostic indicators like mitotic activity and tumor thickness. Through a computational pipeline using machine learning and deep learning methods, we...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2024-05, Vol.16 (11), p.2026
Main Authors: Bian, Chang, Ashton, Garry, Grant, Megan, Rodriguez, Valeria Pavet, Martin, Isabel Peset, Tsakiroglou, Anna Maria, Cook, Martin, Fergie, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c373t-9840132186ba1d05cc265747758f07d5a0600570cd7647999a93ca318c4cdfe83
container_end_page
container_issue 11
container_start_page 2026
container_title Cancers
container_volume 16
creator Bian, Chang
Ashton, Garry
Grant, Megan
Rodriguez, Valeria Pavet
Martin, Isabel Peset
Tsakiroglou, Anna Maria
Cook, Martin
Fergie, Martin
description In this study, the prognostic value of cellular morphology and spatial configurations in melanoma has been examined, aiming to complement traditional prognostic indicators like mitotic activity and tumor thickness. Through a computational pipeline using machine learning and deep learning methods, we quantified nuclei sizes within different spatial regions and analyzed their prognostic significance using univariate and multivariate Cox models. Nuclei sizes in the invasive band demonstrated a significant hazard ratio (HR) of 1.1 (95% CI: 1.03, 1.18). Similarly, the nuclei sizes of tumor cells and Ki67 S100 co-positive cells in the invasive band achieved HRs of 1.07 (95% CI: 1.02, 1.13) and 1.09 (95% CI: 1.04, 1.16), respectively. Our findings reveal that nuclei sizes, particularly in the invasive band, are potentially prognostic factors. Correlation analyses further demonstrated a meaningful relationship between cellular morphology and tumor progression, notably showing that nuclei size within the invasive band correlates substantially with tumor thickness. These results suggest the potential of integrating spatial and morphological analyses into melanoma prognostication.
doi_str_mv 10.3390/cancers16112026
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11171264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797899043</galeid><sourcerecordid>A797899043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-9840132186ba1d05cc265747758f07d5a0600570cd7647999a93ca318c4cdfe83</originalsourceid><addsrcrecordid>eNptUk1LHTEUDaVSRV13Vwa66eZpMpnJRzfl8WhVUBTarsP1TmZeZCaZJhmh_755aK1Kk8W93JxzkhMOIe8ZPeFc01MEjzYmJhiraS3ekIOaynolhG7ePuv3yXFKd7QszpkU8h3Z50ppzhpxQIYLn-0QITs_VN_nUmGswHfVVYjzNoxhcFgmmy1EwGyjS9lhqpzPobqyI_gwQXUTw-BDculzta42YZqXXISCL8T1PMcAuD0iez2MyR4_1kPy89vXH5vz1eX12cVmfblCLnleadVQxmumxC2wjraItWhlI2Wreiq7FqigtJUUOykaqbUGzRE4U9hg11vFD8mXB915uZ1sh9bnCKOZo5sg_jYBnHl54t3WDOHeMMYkq0VTFD49KsTwa7Epm8kltGPxasOSDKeSqvJIwQv04yvoXVhisb1DCclVW6v2H2qA0Rrn-1Auxp2oWUstlda02Wmd_AdVdmcnh8Hb3pX5C8LpAwFjSCna_skko2aXD_MqH4Xx4fnfPOH_poH_AeZDtnY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067385285</pqid></control><display><type>article</type><title>Integrating Spatial and Morphological Characteristics into Melanoma Prognosis: A Computational Approach</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Bian, Chang ; Ashton, Garry ; Grant, Megan ; Rodriguez, Valeria Pavet ; Martin, Isabel Peset ; Tsakiroglou, Anna Maria ; Cook, Martin ; Fergie, Martin</creator><creatorcontrib>Bian, Chang ; Ashton, Garry ; Grant, Megan ; Rodriguez, Valeria Pavet ; Martin, Isabel Peset ; Tsakiroglou, Anna Maria ; Cook, Martin ; Fergie, Martin</creatorcontrib><description>In this study, the prognostic value of cellular morphology and spatial configurations in melanoma has been examined, aiming to complement traditional prognostic indicators like mitotic activity and tumor thickness. Through a computational pipeline using machine learning and deep learning methods, we quantified nuclei sizes within different spatial regions and analyzed their prognostic significance using univariate and multivariate Cox models. Nuclei sizes in the invasive band demonstrated a significant hazard ratio (HR) of 1.1 (95% CI: 1.03, 1.18). Similarly, the nuclei sizes of tumor cells and Ki67 S100 co-positive cells in the invasive band achieved HRs of 1.07 (95% CI: 1.02, 1.13) and 1.09 (95% CI: 1.04, 1.16), respectively. Our findings reveal that nuclei sizes, particularly in the invasive band, are potentially prognostic factors. Correlation analyses further demonstrated a meaningful relationship between cellular morphology and tumor progression, notably showing that nuclei size within the invasive band correlates substantially with tumor thickness. These results suggest the potential of integrating spatial and morphological analyses into melanoma prognostication.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers16112026</identifier><identifier>PMID: 38893146</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Antibodies ; Cancer ; Cell physiology ; Computer applications ; Correlation analysis ; Cytology ; Deep learning ; Machine learning ; Medical prognosis ; Melanoma ; Morphology ; Nuclei ; Oncology, Experimental ; Physical characteristics ; Prognosis ; Skin cancer ; Spatial analysis ; Spatial distribution ; Statistical models ; Survival analysis ; Tumor cells ; Tumors</subject><ispartof>Cancers, 2024-05, Vol.16 (11), p.2026</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c373t-9840132186ba1d05cc265747758f07d5a0600570cd7647999a93ca318c4cdfe83</cites><orcidid>0000-0002-9531-6109 ; 0000-0002-6721-6944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3067385285/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3067385285?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38893146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bian, Chang</creatorcontrib><creatorcontrib>Ashton, Garry</creatorcontrib><creatorcontrib>Grant, Megan</creatorcontrib><creatorcontrib>Rodriguez, Valeria Pavet</creatorcontrib><creatorcontrib>Martin, Isabel Peset</creatorcontrib><creatorcontrib>Tsakiroglou, Anna Maria</creatorcontrib><creatorcontrib>Cook, Martin</creatorcontrib><creatorcontrib>Fergie, Martin</creatorcontrib><title>Integrating Spatial and Morphological Characteristics into Melanoma Prognosis: A Computational Approach</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>In this study, the prognostic value of cellular morphology and spatial configurations in melanoma has been examined, aiming to complement traditional prognostic indicators like mitotic activity and tumor thickness. Through a computational pipeline using machine learning and deep learning methods, we quantified nuclei sizes within different spatial regions and analyzed their prognostic significance using univariate and multivariate Cox models. Nuclei sizes in the invasive band demonstrated a significant hazard ratio (HR) of 1.1 (95% CI: 1.03, 1.18). Similarly, the nuclei sizes of tumor cells and Ki67 S100 co-positive cells in the invasive band achieved HRs of 1.07 (95% CI: 1.02, 1.13) and 1.09 (95% CI: 1.04, 1.16), respectively. Our findings reveal that nuclei sizes, particularly in the invasive band, are potentially prognostic factors. Correlation analyses further demonstrated a meaningful relationship between cellular morphology and tumor progression, notably showing that nuclei size within the invasive band correlates substantially with tumor thickness. These results suggest the potential of integrating spatial and morphological analyses into melanoma prognostication.</description><subject>Antibodies</subject><subject>Cancer</subject><subject>Cell physiology</subject><subject>Computer applications</subject><subject>Correlation analysis</subject><subject>Cytology</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Medical prognosis</subject><subject>Melanoma</subject><subject>Morphology</subject><subject>Nuclei</subject><subject>Oncology, Experimental</subject><subject>Physical characteristics</subject><subject>Prognosis</subject><subject>Skin cancer</subject><subject>Spatial analysis</subject><subject>Spatial distribution</subject><subject>Statistical models</subject><subject>Survival analysis</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUk1LHTEUDaVSRV13Vwa66eZpMpnJRzfl8WhVUBTarsP1TmZeZCaZJhmh_755aK1Kk8W93JxzkhMOIe8ZPeFc01MEjzYmJhiraS3ekIOaynolhG7ePuv3yXFKd7QszpkU8h3Z50ppzhpxQIYLn-0QITs_VN_nUmGswHfVVYjzNoxhcFgmmy1EwGyjS9lhqpzPobqyI_gwQXUTw-BDculzta42YZqXXISCL8T1PMcAuD0iez2MyR4_1kPy89vXH5vz1eX12cVmfblCLnleadVQxmumxC2wjraItWhlI2Wreiq7FqigtJUUOykaqbUGzRE4U9hg11vFD8mXB915uZ1sh9bnCKOZo5sg_jYBnHl54t3WDOHeMMYkq0VTFD49KsTwa7Epm8kltGPxasOSDKeSqvJIwQv04yvoXVhisb1DCclVW6v2H2qA0Rrn-1Auxp2oWUstlda02Wmd_AdVdmcnh8Hb3pX5C8LpAwFjSCna_skko2aXD_MqH4Xx4fnfPOH_poH_AeZDtnY</recordid><startdate>20240527</startdate><enddate>20240527</enddate><creator>Bian, Chang</creator><creator>Ashton, Garry</creator><creator>Grant, Megan</creator><creator>Rodriguez, Valeria Pavet</creator><creator>Martin, Isabel Peset</creator><creator>Tsakiroglou, Anna Maria</creator><creator>Cook, Martin</creator><creator>Fergie, Martin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9531-6109</orcidid><orcidid>https://orcid.org/0000-0002-6721-6944</orcidid></search><sort><creationdate>20240527</creationdate><title>Integrating Spatial and Morphological Characteristics into Melanoma Prognosis: A Computational Approach</title><author>Bian, Chang ; Ashton, Garry ; Grant, Megan ; Rodriguez, Valeria Pavet ; Martin, Isabel Peset ; Tsakiroglou, Anna Maria ; Cook, Martin ; Fergie, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-9840132186ba1d05cc265747758f07d5a0600570cd7647999a93ca318c4cdfe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antibodies</topic><topic>Cancer</topic><topic>Cell physiology</topic><topic>Computer applications</topic><topic>Correlation analysis</topic><topic>Cytology</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Medical prognosis</topic><topic>Melanoma</topic><topic>Morphology</topic><topic>Nuclei</topic><topic>Oncology, Experimental</topic><topic>Physical characteristics</topic><topic>Prognosis</topic><topic>Skin cancer</topic><topic>Spatial analysis</topic><topic>Spatial distribution</topic><topic>Statistical models</topic><topic>Survival analysis</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Chang</creatorcontrib><creatorcontrib>Ashton, Garry</creatorcontrib><creatorcontrib>Grant, Megan</creatorcontrib><creatorcontrib>Rodriguez, Valeria Pavet</creatorcontrib><creatorcontrib>Martin, Isabel Peset</creatorcontrib><creatorcontrib>Tsakiroglou, Anna Maria</creatorcontrib><creatorcontrib>Cook, Martin</creatorcontrib><creatorcontrib>Fergie, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Chang</au><au>Ashton, Garry</au><au>Grant, Megan</au><au>Rodriguez, Valeria Pavet</au><au>Martin, Isabel Peset</au><au>Tsakiroglou, Anna Maria</au><au>Cook, Martin</au><au>Fergie, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Spatial and Morphological Characteristics into Melanoma Prognosis: A Computational Approach</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2024-05-27</date><risdate>2024</risdate><volume>16</volume><issue>11</issue><spage>2026</spage><pages>2026-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>In this study, the prognostic value of cellular morphology and spatial configurations in melanoma has been examined, aiming to complement traditional prognostic indicators like mitotic activity and tumor thickness. Through a computational pipeline using machine learning and deep learning methods, we quantified nuclei sizes within different spatial regions and analyzed their prognostic significance using univariate and multivariate Cox models. Nuclei sizes in the invasive band demonstrated a significant hazard ratio (HR) of 1.1 (95% CI: 1.03, 1.18). Similarly, the nuclei sizes of tumor cells and Ki67 S100 co-positive cells in the invasive band achieved HRs of 1.07 (95% CI: 1.02, 1.13) and 1.09 (95% CI: 1.04, 1.16), respectively. Our findings reveal that nuclei sizes, particularly in the invasive band, are potentially prognostic factors. Correlation analyses further demonstrated a meaningful relationship between cellular morphology and tumor progression, notably showing that nuclei size within the invasive band correlates substantially with tumor thickness. These results suggest the potential of integrating spatial and morphological analyses into melanoma prognostication.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38893146</pmid><doi>10.3390/cancers16112026</doi><orcidid>https://orcid.org/0000-0002-9531-6109</orcidid><orcidid>https://orcid.org/0000-0002-6721-6944</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2024-05, Vol.16 (11), p.2026
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11171264
source Publicly Available Content (ProQuest); PubMed Central
subjects Antibodies
Cancer
Cell physiology
Computer applications
Correlation analysis
Cytology
Deep learning
Machine learning
Medical prognosis
Melanoma
Morphology
Nuclei
Oncology, Experimental
Physical characteristics
Prognosis
Skin cancer
Spatial analysis
Spatial distribution
Statistical models
Survival analysis
Tumor cells
Tumors
title Integrating Spatial and Morphological Characteristics into Melanoma Prognosis: A Computational Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Spatial%20and%20Morphological%20Characteristics%20into%20Melanoma%20Prognosis:%20A%20Computational%20Approach&rft.jtitle=Cancers&rft.au=Bian,%20Chang&rft.date=2024-05-27&rft.volume=16&rft.issue=11&rft.spage=2026&rft.pages=2026-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers16112026&rft_dat=%3Cgale_pubme%3EA797899043%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-9840132186ba1d05cc265747758f07d5a0600570cd7647999a93ca318c4cdfe83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067385285&rft_id=info:pmid/38893146&rft_galeid=A797899043&rfr_iscdi=true