Loading…

Reducing Voltage Hysteresis in Li-Rich Sulfide Cathodes by Incorporation of Mn

Conventional intercalation-based cathode materials in Li-ion batteries are based on charge compensation of the redox-active cation and can only intercalate one mole of electron per formula unit. Anion redox, which employs the anion sublattice to compensate charge, is a promising way to achieve multi...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2024-05, Vol.36 (11), p.5687-5697
Main Authors: Li, Xiaotong, Kim, Seong Shik, Qian, Michelle D., Patheria, Eshaan S., Andrews, Jessica L., Morrell, Colin T., Melot, Brent C., See, Kimberly A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a429t-7bcb60bc318e79d732dc226ac0cc12e5cbb94df3124827fc0dbd27f281d414fa3
container_end_page 5697
container_issue 11
container_start_page 5687
container_title Chemistry of materials
container_volume 36
creator Li, Xiaotong
Kim, Seong Shik
Qian, Michelle D.
Patheria, Eshaan S.
Andrews, Jessica L.
Morrell, Colin T.
Melot, Brent C.
See, Kimberly A.
description Conventional intercalation-based cathode materials in Li-ion batteries are based on charge compensation of the redox-active cation and can only intercalate one mole of electron per formula unit. Anion redox, which employs the anion sublattice to compensate charge, is a promising way to achieve multielectron cathode materials. Most anion redox materials still face the problems of slow kinetics and large voltage hysteresis. One potential solution to reduce voltage hysteresis is to increase the covalency of the metal–ligand bonds. By substituting Mn into the electrochemically inert Li1.33Ti0.67S2 (Li2TiS3), anion redox can be activated in the Li1.33–2y/3Ti0.67–y/3Mn y S2 (y = 0–0.5) series. Not only do we observe substantial anion redox, but the voltage hysteresis is significantly reduced, and the rate capability is dramatically enhanced. The y = 0.3 phase exhibits excellent rate and cycling performance, maintaining 90% of the C/10 capacity at 1C, which indicates fast kinetics for anion redox. X-ray absorption spectroscopy (XAS) shows that both the cation and anion redox processes contribute to the charge compensation. We attribute the drop in hysteresis and increase in rate performance to the increased covalency between the metal and the anion. Electrochemical signatures suggest the anion redox mechanism resembles holes on the anion, but the S K-edge XAS data confirm persulfide formation. The mechanism of anion redox shows that forming persulfides can be a low hysteresis, high rate capability mechanism enabled by the appropriate metal–ligand covalency. This work provides insights into how to design cathode materials with anion redox to achieve fast kinetics and low voltage hysteresis.
doi_str_mv 10.1021/acs.chemmater.4c00736
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11171286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069173290</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-7bcb60bc318e79d732dc226ac0cc12e5cbb94df3124827fc0dbd27f281d414fa3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EotPCI4AsVmwy-CeJnRVCo0IrDSCVn63lXDsTV4k92A7SvD2uZjqCFau78Dmfr_0h9IqSNSWMvtOQ1jDaedbZxnUNhAjePkEr2jBSNYSwp2hFZCeqWjTtBbpM6Z4QWqryObrgUkpeM7lCX-6sWcD5Hf4Zpqx3Ft8cUiHa5BJ2Hm9ddedgxN-WaXDG4o3OYzA24f6Abz2EuA9RZxc8DgP-7F-gZ4Oekn15mlfox8fr75ubavv10-3mw7bSNetyJXroW9IDp9KKzgjODDDWaiAAlNkG-r6rzcApqyUTAxDTmzKZpKam9aD5FXp_5O6XfrYGrM9RT2of3azjQQXt1L8n3o1qF34rSqmgTLaF8OZICCk7lcBlCyME7y1kxXhDOiFK6O3pmhh-LTZlNbsEdpq0t2FJipO2o2X7jpRoc4xCDClFO5yXoUQ9GFPFmDobUydjpff675ecW4-KSoAeAw_9-7BEXz72P9A_Y2engg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069173290</pqid></control><display><type>article</type><title>Reducing Voltage Hysteresis in Li-Rich Sulfide Cathodes by Incorporation of Mn</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Xiaotong ; Kim, Seong Shik ; Qian, Michelle D. ; Patheria, Eshaan S. ; Andrews, Jessica L. ; Morrell, Colin T. ; Melot, Brent C. ; See, Kimberly A.</creator><creatorcontrib>Li, Xiaotong ; Kim, Seong Shik ; Qian, Michelle D. ; Patheria, Eshaan S. ; Andrews, Jessica L. ; Morrell, Colin T. ; Melot, Brent C. ; See, Kimberly A. ; California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>Conventional intercalation-based cathode materials in Li-ion batteries are based on charge compensation of the redox-active cation and can only intercalate one mole of electron per formula unit. Anion redox, which employs the anion sublattice to compensate charge, is a promising way to achieve multielectron cathode materials. Most anion redox materials still face the problems of slow kinetics and large voltage hysteresis. One potential solution to reduce voltage hysteresis is to increase the covalency of the metal–ligand bonds. By substituting Mn into the electrochemically inert Li1.33Ti0.67S2 (Li2TiS3), anion redox can be activated in the Li1.33–2y/3Ti0.67–y/3Mn y S2 (y = 0–0.5) series. Not only do we observe substantial anion redox, but the voltage hysteresis is significantly reduced, and the rate capability is dramatically enhanced. The y = 0.3 phase exhibits excellent rate and cycling performance, maintaining 90% of the C/10 capacity at 1C, which indicates fast kinetics for anion redox. X-ray absorption spectroscopy (XAS) shows that both the cation and anion redox processes contribute to the charge compensation. We attribute the drop in hysteresis and increase in rate performance to the increased covalency between the metal and the anion. Electrochemical signatures suggest the anion redox mechanism resembles holes on the anion, but the S K-edge XAS data confirm persulfide formation. The mechanism of anion redox shows that forming persulfides can be a low hysteresis, high rate capability mechanism enabled by the appropriate metal–ligand covalency. This work provides insights into how to design cathode materials with anion redox to achieve fast kinetics and low voltage hysteresis.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.4c00736</identifier><identifier>PMID: 38883428</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anions ; ENERGY STORAGE ; Hysteresis ; Materials ; Redox reactions ; Transition metals</subject><ispartof>Chemistry of materials, 2024-05, Vol.36 (11), p.5687-5697</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society.</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a429t-7bcb60bc318e79d732dc226ac0cc12e5cbb94df3124827fc0dbd27f281d414fa3</cites><orcidid>0000-0002-8010-2474 ; 0000-0002-4815-1014 ; 0000-0003-2604-6392 ; 0000-0002-0133-9693 ; 0000-0002-2761-8498 ; 0000-0002-7078-8206 ; 0000000270788206 ; 0000000201339693 ; 0000000326046392 ; 0000000248151014 ; 0000000280102474 ; 0000000227618498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38883428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2350977$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaotong</creatorcontrib><creatorcontrib>Kim, Seong Shik</creatorcontrib><creatorcontrib>Qian, Michelle D.</creatorcontrib><creatorcontrib>Patheria, Eshaan S.</creatorcontrib><creatorcontrib>Andrews, Jessica L.</creatorcontrib><creatorcontrib>Morrell, Colin T.</creatorcontrib><creatorcontrib>Melot, Brent C.</creatorcontrib><creatorcontrib>See, Kimberly A.</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>Reducing Voltage Hysteresis in Li-Rich Sulfide Cathodes by Incorporation of Mn</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Conventional intercalation-based cathode materials in Li-ion batteries are based on charge compensation of the redox-active cation and can only intercalate one mole of electron per formula unit. Anion redox, which employs the anion sublattice to compensate charge, is a promising way to achieve multielectron cathode materials. Most anion redox materials still face the problems of slow kinetics and large voltage hysteresis. One potential solution to reduce voltage hysteresis is to increase the covalency of the metal–ligand bonds. By substituting Mn into the electrochemically inert Li1.33Ti0.67S2 (Li2TiS3), anion redox can be activated in the Li1.33–2y/3Ti0.67–y/3Mn y S2 (y = 0–0.5) series. Not only do we observe substantial anion redox, but the voltage hysteresis is significantly reduced, and the rate capability is dramatically enhanced. The y = 0.3 phase exhibits excellent rate and cycling performance, maintaining 90% of the C/10 capacity at 1C, which indicates fast kinetics for anion redox. X-ray absorption spectroscopy (XAS) shows that both the cation and anion redox processes contribute to the charge compensation. We attribute the drop in hysteresis and increase in rate performance to the increased covalency between the metal and the anion. Electrochemical signatures suggest the anion redox mechanism resembles holes on the anion, but the S K-edge XAS data confirm persulfide formation. The mechanism of anion redox shows that forming persulfides can be a low hysteresis, high rate capability mechanism enabled by the appropriate metal–ligand covalency. This work provides insights into how to design cathode materials with anion redox to achieve fast kinetics and low voltage hysteresis.</description><subject>Anions</subject><subject>ENERGY STORAGE</subject><subject>Hysteresis</subject><subject>Materials</subject><subject>Redox reactions</subject><subject>Transition metals</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EotPCI4AsVmwy-CeJnRVCo0IrDSCVn63lXDsTV4k92A7SvD2uZjqCFau78Dmfr_0h9IqSNSWMvtOQ1jDaedbZxnUNhAjePkEr2jBSNYSwp2hFZCeqWjTtBbpM6Z4QWqryObrgUkpeM7lCX-6sWcD5Hf4Zpqx3Ft8cUiHa5BJ2Hm9ddedgxN-WaXDG4o3OYzA24f6Abz2EuA9RZxc8DgP-7F-gZ4Oekn15mlfox8fr75ubavv10-3mw7bSNetyJXroW9IDp9KKzgjODDDWaiAAlNkG-r6rzcApqyUTAxDTmzKZpKam9aD5FXp_5O6XfrYGrM9RT2of3azjQQXt1L8n3o1qF34rSqmgTLaF8OZICCk7lcBlCyME7y1kxXhDOiFK6O3pmhh-LTZlNbsEdpq0t2FJipO2o2X7jpRoc4xCDClFO5yXoUQ9GFPFmDobUydjpff675ecW4-KSoAeAw_9-7BEXz72P9A_Y2engg</recordid><startdate>20240516</startdate><enddate>20240516</enddate><creator>Li, Xiaotong</creator><creator>Kim, Seong Shik</creator><creator>Qian, Michelle D.</creator><creator>Patheria, Eshaan S.</creator><creator>Andrews, Jessica L.</creator><creator>Morrell, Colin T.</creator><creator>Melot, Brent C.</creator><creator>See, Kimberly A.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8010-2474</orcidid><orcidid>https://orcid.org/0000-0002-4815-1014</orcidid><orcidid>https://orcid.org/0000-0003-2604-6392</orcidid><orcidid>https://orcid.org/0000-0002-0133-9693</orcidid><orcidid>https://orcid.org/0000-0002-2761-8498</orcidid><orcidid>https://orcid.org/0000-0002-7078-8206</orcidid><orcidid>https://orcid.org/0000000270788206</orcidid><orcidid>https://orcid.org/0000000201339693</orcidid><orcidid>https://orcid.org/0000000326046392</orcidid><orcidid>https://orcid.org/0000000248151014</orcidid><orcidid>https://orcid.org/0000000280102474</orcidid><orcidid>https://orcid.org/0000000227618498</orcidid></search><sort><creationdate>20240516</creationdate><title>Reducing Voltage Hysteresis in Li-Rich Sulfide Cathodes by Incorporation of Mn</title><author>Li, Xiaotong ; Kim, Seong Shik ; Qian, Michelle D. ; Patheria, Eshaan S. ; Andrews, Jessica L. ; Morrell, Colin T. ; Melot, Brent C. ; See, Kimberly A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-7bcb60bc318e79d732dc226ac0cc12e5cbb94df3124827fc0dbd27f281d414fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anions</topic><topic>ENERGY STORAGE</topic><topic>Hysteresis</topic><topic>Materials</topic><topic>Redox reactions</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaotong</creatorcontrib><creatorcontrib>Kim, Seong Shik</creatorcontrib><creatorcontrib>Qian, Michelle D.</creatorcontrib><creatorcontrib>Patheria, Eshaan S.</creatorcontrib><creatorcontrib>Andrews, Jessica L.</creatorcontrib><creatorcontrib>Morrell, Colin T.</creatorcontrib><creatorcontrib>Melot, Brent C.</creatorcontrib><creatorcontrib>See, Kimberly A.</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaotong</au><au>Kim, Seong Shik</au><au>Qian, Michelle D.</au><au>Patheria, Eshaan S.</au><au>Andrews, Jessica L.</au><au>Morrell, Colin T.</au><au>Melot, Brent C.</au><au>See, Kimberly A.</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Voltage Hysteresis in Li-Rich Sulfide Cathodes by Incorporation of Mn</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2024-05-16</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><spage>5687</spage><epage>5697</epage><pages>5687-5697</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Conventional intercalation-based cathode materials in Li-ion batteries are based on charge compensation of the redox-active cation and can only intercalate one mole of electron per formula unit. Anion redox, which employs the anion sublattice to compensate charge, is a promising way to achieve multielectron cathode materials. Most anion redox materials still face the problems of slow kinetics and large voltage hysteresis. One potential solution to reduce voltage hysteresis is to increase the covalency of the metal–ligand bonds. By substituting Mn into the electrochemically inert Li1.33Ti0.67S2 (Li2TiS3), anion redox can be activated in the Li1.33–2y/3Ti0.67–y/3Mn y S2 (y = 0–0.5) series. Not only do we observe substantial anion redox, but the voltage hysteresis is significantly reduced, and the rate capability is dramatically enhanced. The y = 0.3 phase exhibits excellent rate and cycling performance, maintaining 90% of the C/10 capacity at 1C, which indicates fast kinetics for anion redox. X-ray absorption spectroscopy (XAS) shows that both the cation and anion redox processes contribute to the charge compensation. We attribute the drop in hysteresis and increase in rate performance to the increased covalency between the metal and the anion. Electrochemical signatures suggest the anion redox mechanism resembles holes on the anion, but the S K-edge XAS data confirm persulfide formation. The mechanism of anion redox shows that forming persulfides can be a low hysteresis, high rate capability mechanism enabled by the appropriate metal–ligand covalency. This work provides insights into how to design cathode materials with anion redox to achieve fast kinetics and low voltage hysteresis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38883428</pmid><doi>10.1021/acs.chemmater.4c00736</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8010-2474</orcidid><orcidid>https://orcid.org/0000-0002-4815-1014</orcidid><orcidid>https://orcid.org/0000-0003-2604-6392</orcidid><orcidid>https://orcid.org/0000-0002-0133-9693</orcidid><orcidid>https://orcid.org/0000-0002-2761-8498</orcidid><orcidid>https://orcid.org/0000-0002-7078-8206</orcidid><orcidid>https://orcid.org/0000000270788206</orcidid><orcidid>https://orcid.org/0000000201339693</orcidid><orcidid>https://orcid.org/0000000326046392</orcidid><orcidid>https://orcid.org/0000000248151014</orcidid><orcidid>https://orcid.org/0000000280102474</orcidid><orcidid>https://orcid.org/0000000227618498</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2024-05, Vol.36 (11), p.5687-5697
issn 0897-4756
1520-5002
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11171286
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Anions
ENERGY STORAGE
Hysteresis
Materials
Redox reactions
Transition metals
title Reducing Voltage Hysteresis in Li-Rich Sulfide Cathodes by Incorporation of Mn
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Voltage%20Hysteresis%20in%20Li-Rich%20Sulfide%20Cathodes%20by%20Incorporation%20of%20Mn&rft.jtitle=Chemistry%20of%20materials&rft.au=Li,%20Xiaotong&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2024-05-16&rft.volume=36&rft.issue=11&rft.spage=5687&rft.epage=5697&rft.pages=5687-5697&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.4c00736&rft_dat=%3Cproquest_pubme%3E3069173290%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a429t-7bcb60bc318e79d732dc226ac0cc12e5cbb94df3124827fc0dbd27f281d414fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069173290&rft_id=info:pmid/38883428&rfr_iscdi=true