Loading…

Structural and Interactional Analysis of the Flavonoid Pathway Proteins: Chalcone Synthase, Chalcone Isomerase and Chalcone Isomerase-like Protein

Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obta...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2024-06, Vol.25 (11), p.5651
Main Authors: Lewis, Jacob A, Jacobo, Eric P, Palmer, Nathan, Vermerris, Wilfred, Sattler, Scott E, Brozik, James A, Sarath, Gautam, Kang, ChulHee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c507t-45aad481611abed7a281898d8f1c63cf2fd57f5ad0b918df1487d36987eed75f3
cites cdi_FETCH-LOGICAL-c507t-45aad481611abed7a281898d8f1c63cf2fd57f5ad0b918df1487d36987eed75f3
container_end_page
container_issue 11
container_start_page 5651
container_title International journal of molecular sciences
container_volume 25
creator Lewis, Jacob A
Jacobo, Eric P
Palmer, Nathan
Vermerris, Wilfred
Sattler, Scott E
Brozik, James A
Sarath, Gautam
Kang, ChulHee
description Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, , along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of -coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of -coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.
doi_str_mv 10.3390/ijms25115651
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11172311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797898049</galeid><sourcerecordid>A797898049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-45aad481611abed7a281898d8f1c63cf2fd57f5ad0b918df1487d36987eed75f3</originalsourceid><addsrcrecordid>eNptkl1vFCEUhidGY2v1zmsz0RsvOhWGYWC8MZuN1U2a2KR6TVg4dFhnoAJTs3_DXyzj9mOrhgTI4eGF855TFC8xOiGkQ-_sZow1xZi2FD8qDnFT1xVCLXu8tz8onsW4QagmNe2eFgeE8w7zBh0Wvy5SmFSaghxK6XS5cgmCVMl6lyOLPG2jjaU3ZeqhPB3ktXfe6vJcpv6n3JbnwSewLr4vl70clHdQXmxd6mWE4_vQKvoxy0b488a_4Wqw3-FW63nxxMghwoub9aj4dvrx6_Jzdfbl02q5OKsURSxVDZVSNxy3GMs1aCZrjnnHNTdYtUSZ2mjKDJUarXOu2uCGM03ajjPINDXkqPiw072a1iNoBS5lF8RVsKMMW-GlFQ9PnO3Fpb8WGGNWE4yzwuudgo_JiqhsAtXnzByoJOqGYYRm6O3NM8H_mCAmMdqoYBikAz9FQRBDrMv1aDL65i9046eQazBTLWs4ZRTdU5dyAGGd8fl3ahYVC9ax7AFqukyd_IfKQ8NoZ_eNzfEHF453F1TwMQYwd05gJOZOE_udlvFX--7dwbetRX4DYxXQLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067485750</pqid></control><display><type>article</type><title>Structural and Interactional Analysis of the Flavonoid Pathway Proteins: Chalcone Synthase, Chalcone Isomerase and Chalcone Isomerase-like Protein</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Lewis, Jacob A ; Jacobo, Eric P ; Palmer, Nathan ; Vermerris, Wilfred ; Sattler, Scott E ; Brozik, James A ; Sarath, Gautam ; Kang, ChulHee</creator><creatorcontrib>Lewis, Jacob A ; Jacobo, Eric P ; Palmer, Nathan ; Vermerris, Wilfred ; Sattler, Scott E ; Brozik, James A ; Sarath, Gautam ; Kang, ChulHee ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><description>Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, , along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of -coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of -coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms25115651</identifier><identifier>PMID: 38891840</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acyltransferases - chemistry ; Acyltransferases - metabolism ; Agricultural production ; Amino acids ; Analysis ; Biochemistry &amp; Molecular Biology ; Biosynthesis ; Calorimetry ; Chalcones - chemistry ; Chalcones - metabolism ; Chemistry ; Crystallography, X-Ray ; Cytochrome ; Enzymes ; Flavanones - chemistry ; Flavanones - metabolism ; Flavonoids ; Flavonoids - chemistry ; Flavonoids - metabolism ; Hydrogen bonding ; Intramolecular Lyases - chemistry ; Intramolecular Lyases - metabolism ; Isoflavones ; Kinetics ; Legumes ; Models, Molecular ; Molecular Docking Simulation ; Plant Proteins - chemistry ; Plant Proteins - metabolism ; Protein Binding ; Protein Conformation ; Proteins ; Sorghum ; Stereoisomers ; Substrate Specificity</subject><ispartof>International journal of molecular sciences, 2024-06, Vol.25 (11), p.5651</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-45aad481611abed7a281898d8f1c63cf2fd57f5ad0b918df1487d36987eed75f3</citedby><cites>FETCH-LOGICAL-c507t-45aad481611abed7a281898d8f1c63cf2fd57f5ad0b918df1487d36987eed75f3</cites><orcidid>0000-0001-6430-7034 ; 0000-0002-4582-3436 ; 0000-0002-6814-4073 ; 0000-0002-0693-7860 ; 0000-0003-2097-5051 ; 0000-0002-7127-0468 ; 0000000164307034 ; 0000000206937860 ; 0000000320975051 ; 0000000268144073 ; 0000000245823436 ; 0000000271270468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3067485750/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3067485750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38891840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2471001$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, Jacob A</creatorcontrib><creatorcontrib>Jacobo, Eric P</creatorcontrib><creatorcontrib>Palmer, Nathan</creatorcontrib><creatorcontrib>Vermerris, Wilfred</creatorcontrib><creatorcontrib>Sattler, Scott E</creatorcontrib><creatorcontrib>Brozik, James A</creatorcontrib><creatorcontrib>Sarath, Gautam</creatorcontrib><creatorcontrib>Kang, ChulHee</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><title>Structural and Interactional Analysis of the Flavonoid Pathway Proteins: Chalcone Synthase, Chalcone Isomerase and Chalcone Isomerase-like Protein</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, , along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of -coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of -coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.</description><subject>Acyltransferases - chemistry</subject><subject>Acyltransferases - metabolism</subject><subject>Agricultural production</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biosynthesis</subject><subject>Calorimetry</subject><subject>Chalcones - chemistry</subject><subject>Chalcones - metabolism</subject><subject>Chemistry</subject><subject>Crystallography, X-Ray</subject><subject>Cytochrome</subject><subject>Enzymes</subject><subject>Flavanones - chemistry</subject><subject>Flavanones - metabolism</subject><subject>Flavonoids</subject><subject>Flavonoids - chemistry</subject><subject>Flavonoids - metabolism</subject><subject>Hydrogen bonding</subject><subject>Intramolecular Lyases - chemistry</subject><subject>Intramolecular Lyases - metabolism</subject><subject>Isoflavones</subject><subject>Kinetics</subject><subject>Legumes</subject><subject>Models, Molecular</subject><subject>Molecular Docking Simulation</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - metabolism</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Sorghum</subject><subject>Stereoisomers</subject><subject>Substrate Specificity</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkl1vFCEUhidGY2v1zmsz0RsvOhWGYWC8MZuN1U2a2KR6TVg4dFhnoAJTs3_DXyzj9mOrhgTI4eGF855TFC8xOiGkQ-_sZow1xZi2FD8qDnFT1xVCLXu8tz8onsW4QagmNe2eFgeE8w7zBh0Wvy5SmFSaghxK6XS5cgmCVMl6lyOLPG2jjaU3ZeqhPB3ktXfe6vJcpv6n3JbnwSewLr4vl70clHdQXmxd6mWE4_vQKvoxy0b488a_4Wqw3-FW63nxxMghwoub9aj4dvrx6_Jzdfbl02q5OKsURSxVDZVSNxy3GMs1aCZrjnnHNTdYtUSZ2mjKDJUarXOu2uCGM03ajjPINDXkqPiw072a1iNoBS5lF8RVsKMMW-GlFQ9PnO3Fpb8WGGNWE4yzwuudgo_JiqhsAtXnzByoJOqGYYRm6O3NM8H_mCAmMdqoYBikAz9FQRBDrMv1aDL65i9046eQazBTLWs4ZRTdU5dyAGGd8fl3ahYVC9ax7AFqukyd_IfKQ8NoZ_eNzfEHF453F1TwMQYwd05gJOZOE_udlvFX--7dwbetRX4DYxXQLQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Lewis, Jacob A</creator><creator>Jacobo, Eric P</creator><creator>Palmer, Nathan</creator><creator>Vermerris, Wilfred</creator><creator>Sattler, Scott E</creator><creator>Brozik, James A</creator><creator>Sarath, Gautam</creator><creator>Kang, ChulHee</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6430-7034</orcidid><orcidid>https://orcid.org/0000-0002-4582-3436</orcidid><orcidid>https://orcid.org/0000-0002-6814-4073</orcidid><orcidid>https://orcid.org/0000-0002-0693-7860</orcidid><orcidid>https://orcid.org/0000-0003-2097-5051</orcidid><orcidid>https://orcid.org/0000-0002-7127-0468</orcidid><orcidid>https://orcid.org/0000000164307034</orcidid><orcidid>https://orcid.org/0000000206937860</orcidid><orcidid>https://orcid.org/0000000320975051</orcidid><orcidid>https://orcid.org/0000000268144073</orcidid><orcidid>https://orcid.org/0000000245823436</orcidid><orcidid>https://orcid.org/0000000271270468</orcidid></search><sort><creationdate>20240601</creationdate><title>Structural and Interactional Analysis of the Flavonoid Pathway Proteins: Chalcone Synthase, Chalcone Isomerase and Chalcone Isomerase-like Protein</title><author>Lewis, Jacob A ; Jacobo, Eric P ; Palmer, Nathan ; Vermerris, Wilfred ; Sattler, Scott E ; Brozik, James A ; Sarath, Gautam ; Kang, ChulHee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-45aad481611abed7a281898d8f1c63cf2fd57f5ad0b918df1487d36987eed75f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acyltransferases - chemistry</topic><topic>Acyltransferases - metabolism</topic><topic>Agricultural production</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biosynthesis</topic><topic>Calorimetry</topic><topic>Chalcones - chemistry</topic><topic>Chalcones - metabolism</topic><topic>Chemistry</topic><topic>Crystallography, X-Ray</topic><topic>Cytochrome</topic><topic>Enzymes</topic><topic>Flavanones - chemistry</topic><topic>Flavanones - metabolism</topic><topic>Flavonoids</topic><topic>Flavonoids - chemistry</topic><topic>Flavonoids - metabolism</topic><topic>Hydrogen bonding</topic><topic>Intramolecular Lyases - chemistry</topic><topic>Intramolecular Lyases - metabolism</topic><topic>Isoflavones</topic><topic>Kinetics</topic><topic>Legumes</topic><topic>Models, Molecular</topic><topic>Molecular Docking Simulation</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - metabolism</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Sorghum</topic><topic>Stereoisomers</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Jacob A</creatorcontrib><creatorcontrib>Jacobo, Eric P</creatorcontrib><creatorcontrib>Palmer, Nathan</creatorcontrib><creatorcontrib>Vermerris, Wilfred</creatorcontrib><creatorcontrib>Sattler, Scott E</creatorcontrib><creatorcontrib>Brozik, James A</creatorcontrib><creatorcontrib>Sarath, Gautam</creatorcontrib><creatorcontrib>Kang, ChulHee</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Jacob A</au><au>Jacobo, Eric P</au><au>Palmer, Nathan</au><au>Vermerris, Wilfred</au><au>Sattler, Scott E</au><au>Brozik, James A</au><au>Sarath, Gautam</au><au>Kang, ChulHee</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Interactional Analysis of the Flavonoid Pathway Proteins: Chalcone Synthase, Chalcone Isomerase and Chalcone Isomerase-like Protein</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>25</volume><issue>11</issue><spage>5651</spage><pages>5651-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, , along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of -coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of -coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38891840</pmid><doi>10.3390/ijms25115651</doi><orcidid>https://orcid.org/0000-0001-6430-7034</orcidid><orcidid>https://orcid.org/0000-0002-4582-3436</orcidid><orcidid>https://orcid.org/0000-0002-6814-4073</orcidid><orcidid>https://orcid.org/0000-0002-0693-7860</orcidid><orcidid>https://orcid.org/0000-0003-2097-5051</orcidid><orcidid>https://orcid.org/0000-0002-7127-0468</orcidid><orcidid>https://orcid.org/0000000164307034</orcidid><orcidid>https://orcid.org/0000000206937860</orcidid><orcidid>https://orcid.org/0000000320975051</orcidid><orcidid>https://orcid.org/0000000268144073</orcidid><orcidid>https://orcid.org/0000000245823436</orcidid><orcidid>https://orcid.org/0000000271270468</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2024-06, Vol.25 (11), p.5651
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11172311
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Acyltransferases - chemistry
Acyltransferases - metabolism
Agricultural production
Amino acids
Analysis
Biochemistry & Molecular Biology
Biosynthesis
Calorimetry
Chalcones - chemistry
Chalcones - metabolism
Chemistry
Crystallography, X-Ray
Cytochrome
Enzymes
Flavanones - chemistry
Flavanones - metabolism
Flavonoids
Flavonoids - chemistry
Flavonoids - metabolism
Hydrogen bonding
Intramolecular Lyases - chemistry
Intramolecular Lyases - metabolism
Isoflavones
Kinetics
Legumes
Models, Molecular
Molecular Docking Simulation
Plant Proteins - chemistry
Plant Proteins - metabolism
Protein Binding
Protein Conformation
Proteins
Sorghum
Stereoisomers
Substrate Specificity
title Structural and Interactional Analysis of the Flavonoid Pathway Proteins: Chalcone Synthase, Chalcone Isomerase and Chalcone Isomerase-like Protein
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Interactional%20Analysis%20of%20the%20Flavonoid%20Pathway%20Proteins:%20Chalcone%20Synthase,%20Chalcone%20Isomerase%20and%20Chalcone%20Isomerase-like%20Protein&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Lewis,%20Jacob%20A&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20Advanced%20Light%20Source%20(ALS)&rft.date=2024-06-01&rft.volume=25&rft.issue=11&rft.spage=5651&rft.pages=5651-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms25115651&rft_dat=%3Cgale_pubme%3EA797898049%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c507t-45aad481611abed7a281898d8f1c63cf2fd57f5ad0b918df1487d36987eed75f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067485750&rft_id=info:pmid/38891840&rft_galeid=A797898049&rfr_iscdi=true