Loading…
Optimizing the Sintering Conditions of (Fe,Co) 1.95 (P,Si) Compounds for Permanent Magnet Applications
(Fe,Co) (P,Si) quaternary compounds combine large uniaxial magnetocrystalline anisotropy, significant saturation magnetization and tunable Curie temperature, making them attractive for permanent magnet applications. Single crystals or conventionally prepared bulk polycrystalline (Fe,Co) (P,Si) sampl...
Saved in:
Published in: | Materials 2024-05, Vol.17 (11), p.2476 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c296t-592ee615818ca57debe5bfc5fb76ca087df883a68d88503e2b63bfe835624cc13 |
container_end_page | |
container_issue | 11 |
container_start_page | 2476 |
container_title | Materials |
container_volume | 17 |
creator | Yiderigu, Jin Yibole, Hargen Bao, Lingbo Bao, Lingling Guillou, François |
description | (Fe,Co)
(P,Si) quaternary compounds combine large uniaxial magnetocrystalline anisotropy, significant saturation magnetization and tunable Curie temperature, making them attractive for permanent magnet applications. Single crystals or conventionally prepared bulk polycrystalline (Fe,Co)
(P,Si) samples do not, however, show a significant coercivity. Here, after a ball-milling stage of elemental precursors, we optimize the sintering temperature and duration during the solid-state synthesis of bulk Fe
Co
P
Si
compounds so as to obtain coercivity in bulk samples. We pay special attention to shortening the heat treatment in order to limit grain growth. Powder X-ray diffraction experiments demonstrate that a sintering of a few minutes is sufficient to form the desired Fe
P-type hexagonal structure with limited secondary-phase content (~5 wt.%). Coercivity is achieved in bulk Fe
Co
P
Si
quaternary compounds by shortening the heat treatment. Surprisingly, the largest coercivities are observed in the samples presenting large amounts of secondary-phase content (>5 wt.%). In addition to the shape of the virgin magnetization curve, this may indicate a dominant wall-pining coercivity mechanism. Despite a tenfold improvement of the coercive fields for bulk samples, the achieved performances remain modest (
≈ 0.6 kOe at room temperature). These results nonetheless establish a benchmark for future developments of (Fe,Co)
(P,Si) compounds as permanent magnets. |
doi_str_mv | 10.3390/ma17112476 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11172535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067501847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-592ee615818ca57debe5bfc5fb76ca087df883a68d88503e2b63bfe835624cc13</originalsourceid><addsrcrecordid>eNpdkU9rFTEUxYMottRu_AAScPMqfTWZTP6tpDxaFSotVNchk7l5TZlJxmRG0E_fPFtr9W5yQ36cnMNB6DUlJ4xp8n60VFLatFI8Q_tUa7Gmum2fP9n30GEpt6QOY1Q1-iXaY0ppJluyj_zlNIcx_Apxi-cbwNchzpB3t02KfZhDigUnj1fncLxJR5ieaI5XV8fX4agS45SW2BfsU8ZXkEcbIc74i91GmPHpNA3B2d8Sr9ALb4cChw_nAfp2fvZ182l9cfnx8-b0Yu0aLeY11w2AoFxR5SyXPXTAO--476RwlijZe6WYFapXihMGTSdY50ExLprWOcoO0Id73WnpRuhdtZPtYKYcRpt_mmSD-fclhhuzTT8MpVQ2nPGqsHpQyOn7AmU2YygOhqFmS0sxjEiiCBFs99nb_9DbtORY81VKSE6oamWl3t1TLqdSMvhHN5SYXYXmb4UVfvPU_yP6pzB2BwaQlWc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067501847</pqid></control><display><type>article</type><title>Optimizing the Sintering Conditions of (Fe,Co) 1.95 (P,Si) Compounds for Permanent Magnet Applications</title><source>Publicly Available Content Database</source><source>PubMed Central (PMC)</source><source>Free Full-Text Journals in Chemistry</source><creator>Yiderigu, Jin ; Yibole, Hargen ; Bao, Lingbo ; Bao, Lingling ; Guillou, François</creator><creatorcontrib>Yiderigu, Jin ; Yibole, Hargen ; Bao, Lingbo ; Bao, Lingling ; Guillou, François</creatorcontrib><description>(Fe,Co)
(P,Si) quaternary compounds combine large uniaxial magnetocrystalline anisotropy, significant saturation magnetization and tunable Curie temperature, making them attractive for permanent magnet applications. Single crystals or conventionally prepared bulk polycrystalline (Fe,Co)
(P,Si) samples do not, however, show a significant coercivity. Here, after a ball-milling stage of elemental precursors, we optimize the sintering temperature and duration during the solid-state synthesis of bulk Fe
Co
P
Si
compounds so as to obtain coercivity in bulk samples. We pay special attention to shortening the heat treatment in order to limit grain growth. Powder X-ray diffraction experiments demonstrate that a sintering of a few minutes is sufficient to form the desired Fe
P-type hexagonal structure with limited secondary-phase content (~5 wt.%). Coercivity is achieved in bulk Fe
Co
P
Si
quaternary compounds by shortening the heat treatment. Surprisingly, the largest coercivities are observed in the samples presenting large amounts of secondary-phase content (>5 wt.%). In addition to the shape of the virgin magnetization curve, this may indicate a dominant wall-pining coercivity mechanism. Despite a tenfold improvement of the coercive fields for bulk samples, the achieved performances remain modest (
≈ 0.6 kOe at room temperature). These results nonetheless establish a benchmark for future developments of (Fe,Co)
(P,Si) compounds as permanent magnets.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17112476</identifier><identifier>PMID: 38893740</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Anisotropy ; Ball milling ; Bulk sampling ; Cobalt ; Coercivity ; Curie temperature ; Grain growth ; Heat treatment ; Iron ; Magnetic saturation ; Magnetization curves ; Optimization ; Permanent magnets ; Room temperature ; Simulation ; Single crystals ; Sintering ; Sintering (powder metallurgy) ; Temperature ; X ray powder diffraction</subject><ispartof>Materials, 2024-05, Vol.17 (11), p.2476</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-592ee615818ca57debe5bfc5fb76ca087df883a68d88503e2b63bfe835624cc13</cites><orcidid>0000-0001-8049-4538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3067501847/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3067501847?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38893740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yiderigu, Jin</creatorcontrib><creatorcontrib>Yibole, Hargen</creatorcontrib><creatorcontrib>Bao, Lingbo</creatorcontrib><creatorcontrib>Bao, Lingling</creatorcontrib><creatorcontrib>Guillou, François</creatorcontrib><title>Optimizing the Sintering Conditions of (Fe,Co) 1.95 (P,Si) Compounds for Permanent Magnet Applications</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>(Fe,Co)
(P,Si) quaternary compounds combine large uniaxial magnetocrystalline anisotropy, significant saturation magnetization and tunable Curie temperature, making them attractive for permanent magnet applications. Single crystals or conventionally prepared bulk polycrystalline (Fe,Co)
(P,Si) samples do not, however, show a significant coercivity. Here, after a ball-milling stage of elemental precursors, we optimize the sintering temperature and duration during the solid-state synthesis of bulk Fe
Co
P
Si
compounds so as to obtain coercivity in bulk samples. We pay special attention to shortening the heat treatment in order to limit grain growth. Powder X-ray diffraction experiments demonstrate that a sintering of a few minutes is sufficient to form the desired Fe
P-type hexagonal structure with limited secondary-phase content (~5 wt.%). Coercivity is achieved in bulk Fe
Co
P
Si
quaternary compounds by shortening the heat treatment. Surprisingly, the largest coercivities are observed in the samples presenting large amounts of secondary-phase content (>5 wt.%). In addition to the shape of the virgin magnetization curve, this may indicate a dominant wall-pining coercivity mechanism. Despite a tenfold improvement of the coercive fields for bulk samples, the achieved performances remain modest (
≈ 0.6 kOe at room temperature). These results nonetheless establish a benchmark for future developments of (Fe,Co)
(P,Si) compounds as permanent magnets.</description><subject>Anisotropy</subject><subject>Ball milling</subject><subject>Bulk sampling</subject><subject>Cobalt</subject><subject>Coercivity</subject><subject>Curie temperature</subject><subject>Grain growth</subject><subject>Heat treatment</subject><subject>Iron</subject><subject>Magnetic saturation</subject><subject>Magnetization curves</subject><subject>Optimization</subject><subject>Permanent magnets</subject><subject>Room temperature</subject><subject>Simulation</subject><subject>Single crystals</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Temperature</subject><subject>X ray powder diffraction</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU9rFTEUxYMottRu_AAScPMqfTWZTP6tpDxaFSotVNchk7l5TZlJxmRG0E_fPFtr9W5yQ36cnMNB6DUlJ4xp8n60VFLatFI8Q_tUa7Gmum2fP9n30GEpt6QOY1Q1-iXaY0ppJluyj_zlNIcx_Apxi-cbwNchzpB3t02KfZhDigUnj1fncLxJR5ieaI5XV8fX4agS45SW2BfsU8ZXkEcbIc74i91GmPHpNA3B2d8Sr9ALb4cChw_nAfp2fvZ182l9cfnx8-b0Yu0aLeY11w2AoFxR5SyXPXTAO--476RwlijZe6WYFapXihMGTSdY50ExLprWOcoO0Id73WnpRuhdtZPtYKYcRpt_mmSD-fclhhuzTT8MpVQ2nPGqsHpQyOn7AmU2YygOhqFmS0sxjEiiCBFs99nb_9DbtORY81VKSE6oamWl3t1TLqdSMvhHN5SYXYXmb4UVfvPU_yP6pzB2BwaQlWc</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Yiderigu, Jin</creator><creator>Yibole, Hargen</creator><creator>Bao, Lingbo</creator><creator>Bao, Lingling</creator><creator>Guillou, François</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8049-4538</orcidid></search><sort><creationdate>20240521</creationdate><title>Optimizing the Sintering Conditions of (Fe,Co) 1.95 (P,Si) Compounds for Permanent Magnet Applications</title><author>Yiderigu, Jin ; Yibole, Hargen ; Bao, Lingbo ; Bao, Lingling ; Guillou, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-592ee615818ca57debe5bfc5fb76ca087df883a68d88503e2b63bfe835624cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Ball milling</topic><topic>Bulk sampling</topic><topic>Cobalt</topic><topic>Coercivity</topic><topic>Curie temperature</topic><topic>Grain growth</topic><topic>Heat treatment</topic><topic>Iron</topic><topic>Magnetic saturation</topic><topic>Magnetization curves</topic><topic>Optimization</topic><topic>Permanent magnets</topic><topic>Room temperature</topic><topic>Simulation</topic><topic>Single crystals</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Temperature</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yiderigu, Jin</creatorcontrib><creatorcontrib>Yibole, Hargen</creatorcontrib><creatorcontrib>Bao, Lingbo</creatorcontrib><creatorcontrib>Bao, Lingling</creatorcontrib><creatorcontrib>Guillou, François</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yiderigu, Jin</au><au>Yibole, Hargen</au><au>Bao, Lingbo</au><au>Bao, Lingling</au><au>Guillou, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing the Sintering Conditions of (Fe,Co) 1.95 (P,Si) Compounds for Permanent Magnet Applications</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-05-21</date><risdate>2024</risdate><volume>17</volume><issue>11</issue><spage>2476</spage><pages>2476-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>(Fe,Co)
(P,Si) quaternary compounds combine large uniaxial magnetocrystalline anisotropy, significant saturation magnetization and tunable Curie temperature, making them attractive for permanent magnet applications. Single crystals or conventionally prepared bulk polycrystalline (Fe,Co)
(P,Si) samples do not, however, show a significant coercivity. Here, after a ball-milling stage of elemental precursors, we optimize the sintering temperature and duration during the solid-state synthesis of bulk Fe
Co
P
Si
compounds so as to obtain coercivity in bulk samples. We pay special attention to shortening the heat treatment in order to limit grain growth. Powder X-ray diffraction experiments demonstrate that a sintering of a few minutes is sufficient to form the desired Fe
P-type hexagonal structure with limited secondary-phase content (~5 wt.%). Coercivity is achieved in bulk Fe
Co
P
Si
quaternary compounds by shortening the heat treatment. Surprisingly, the largest coercivities are observed in the samples presenting large amounts of secondary-phase content (>5 wt.%). In addition to the shape of the virgin magnetization curve, this may indicate a dominant wall-pining coercivity mechanism. Despite a tenfold improvement of the coercive fields for bulk samples, the achieved performances remain modest (
≈ 0.6 kOe at room temperature). These results nonetheless establish a benchmark for future developments of (Fe,Co)
(P,Si) compounds as permanent magnets.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38893740</pmid><doi>10.3390/ma17112476</doi><orcidid>https://orcid.org/0000-0001-8049-4538</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-05, Vol.17 (11), p.2476 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11172535 |
source | Publicly Available Content Database; PubMed Central (PMC); Free Full-Text Journals in Chemistry |
subjects | Anisotropy Ball milling Bulk sampling Cobalt Coercivity Curie temperature Grain growth Heat treatment Iron Magnetic saturation Magnetization curves Optimization Permanent magnets Room temperature Simulation Single crystals Sintering Sintering (powder metallurgy) Temperature X ray powder diffraction |
title | Optimizing the Sintering Conditions of (Fe,Co) 1.95 (P,Si) Compounds for Permanent Magnet Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20the%20Sintering%20Conditions%20of%20(Fe,Co)%201.95%20(P,Si)%20Compounds%20for%20Permanent%20Magnet%20Applications&rft.jtitle=Materials&rft.au=Yiderigu,%20Jin&rft.date=2024-05-21&rft.volume=17&rft.issue=11&rft.spage=2476&rft.pages=2476-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17112476&rft_dat=%3Cproquest_pubme%3E3067501847%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-592ee615818ca57debe5bfc5fb76ca087df883a68d88503e2b63bfe835624cc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067501847&rft_id=info:pmid/38893740&rfr_iscdi=true |