Loading…

Optimizing the Sintering Conditions of (Fe,Co) 1.95 (P,Si) Compounds for Permanent Magnet Applications

(Fe,Co) (P,Si) quaternary compounds combine large uniaxial magnetocrystalline anisotropy, significant saturation magnetization and tunable Curie temperature, making them attractive for permanent magnet applications. Single crystals or conventionally prepared bulk polycrystalline (Fe,Co) (P,Si) sampl...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2024-05, Vol.17 (11), p.2476
Main Authors: Yiderigu, Jin, Yibole, Hargen, Bao, Lingbo, Bao, Lingling, Guillou, François
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c296t-592ee615818ca57debe5bfc5fb76ca087df883a68d88503e2b63bfe835624cc13
container_end_page
container_issue 11
container_start_page 2476
container_title Materials
container_volume 17
creator Yiderigu, Jin
Yibole, Hargen
Bao, Lingbo
Bao, Lingling
Guillou, François
description (Fe,Co) (P,Si) quaternary compounds combine large uniaxial magnetocrystalline anisotropy, significant saturation magnetization and tunable Curie temperature, making them attractive for permanent magnet applications. Single crystals or conventionally prepared bulk polycrystalline (Fe,Co) (P,Si) samples do not, however, show a significant coercivity. Here, after a ball-milling stage of elemental precursors, we optimize the sintering temperature and duration during the solid-state synthesis of bulk Fe Co P Si compounds so as to obtain coercivity in bulk samples. We pay special attention to shortening the heat treatment in order to limit grain growth. Powder X-ray diffraction experiments demonstrate that a sintering of a few minutes is sufficient to form the desired Fe P-type hexagonal structure with limited secondary-phase content (~5 wt.%). Coercivity is achieved in bulk Fe Co P Si quaternary compounds by shortening the heat treatment. Surprisingly, the largest coercivities are observed in the samples presenting large amounts of secondary-phase content (>5 wt.%). In addition to the shape of the virgin magnetization curve, this may indicate a dominant wall-pining coercivity mechanism. Despite a tenfold improvement of the coercive fields for bulk samples, the achieved performances remain modest ( ≈ 0.6 kOe at room temperature). These results nonetheless establish a benchmark for future developments of (Fe,Co) (P,Si) compounds as permanent magnets.
doi_str_mv 10.3390/ma17112476
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11172535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067501847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-592ee615818ca57debe5bfc5fb76ca087df883a68d88503e2b63bfe835624cc13</originalsourceid><addsrcrecordid>eNpdkU9rFTEUxYMottRu_AAScPMqfTWZTP6tpDxaFSotVNchk7l5TZlJxmRG0E_fPFtr9W5yQ36cnMNB6DUlJ4xp8n60VFLatFI8Q_tUa7Gmum2fP9n30GEpt6QOY1Q1-iXaY0ppJluyj_zlNIcx_Apxi-cbwNchzpB3t02KfZhDigUnj1fncLxJR5ieaI5XV8fX4agS45SW2BfsU8ZXkEcbIc74i91GmPHpNA3B2d8Sr9ALb4cChw_nAfp2fvZ182l9cfnx8-b0Yu0aLeY11w2AoFxR5SyXPXTAO--476RwlijZe6WYFapXihMGTSdY50ExLprWOcoO0Id73WnpRuhdtZPtYKYcRpt_mmSD-fclhhuzTT8MpVQ2nPGqsHpQyOn7AmU2YygOhqFmS0sxjEiiCBFs99nb_9DbtORY81VKSE6oamWl3t1TLqdSMvhHN5SYXYXmb4UVfvPU_yP6pzB2BwaQlWc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067501847</pqid></control><display><type>article</type><title>Optimizing the Sintering Conditions of (Fe,Co) 1.95 (P,Si) Compounds for Permanent Magnet Applications</title><source>Publicly Available Content Database</source><source>PubMed Central (PMC)</source><source>Free Full-Text Journals in Chemistry</source><creator>Yiderigu, Jin ; Yibole, Hargen ; Bao, Lingbo ; Bao, Lingling ; Guillou, François</creator><creatorcontrib>Yiderigu, Jin ; Yibole, Hargen ; Bao, Lingbo ; Bao, Lingling ; Guillou, François</creatorcontrib><description>(Fe,Co) (P,Si) quaternary compounds combine large uniaxial magnetocrystalline anisotropy, significant saturation magnetization and tunable Curie temperature, making them attractive for permanent magnet applications. Single crystals or conventionally prepared bulk polycrystalline (Fe,Co) (P,Si) samples do not, however, show a significant coercivity. Here, after a ball-milling stage of elemental precursors, we optimize the sintering temperature and duration during the solid-state synthesis of bulk Fe Co P Si compounds so as to obtain coercivity in bulk samples. We pay special attention to shortening the heat treatment in order to limit grain growth. Powder X-ray diffraction experiments demonstrate that a sintering of a few minutes is sufficient to form the desired Fe P-type hexagonal structure with limited secondary-phase content (~5 wt.%). Coercivity is achieved in bulk Fe Co P Si quaternary compounds by shortening the heat treatment. Surprisingly, the largest coercivities are observed in the samples presenting large amounts of secondary-phase content (&gt;5 wt.%). In addition to the shape of the virgin magnetization curve, this may indicate a dominant wall-pining coercivity mechanism. Despite a tenfold improvement of the coercive fields for bulk samples, the achieved performances remain modest ( ≈ 0.6 kOe at room temperature). These results nonetheless establish a benchmark for future developments of (Fe,Co) (P,Si) compounds as permanent magnets.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17112476</identifier><identifier>PMID: 38893740</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Anisotropy ; Ball milling ; Bulk sampling ; Cobalt ; Coercivity ; Curie temperature ; Grain growth ; Heat treatment ; Iron ; Magnetic saturation ; Magnetization curves ; Optimization ; Permanent magnets ; Room temperature ; Simulation ; Single crystals ; Sintering ; Sintering (powder metallurgy) ; Temperature ; X ray powder diffraction</subject><ispartof>Materials, 2024-05, Vol.17 (11), p.2476</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-592ee615818ca57debe5bfc5fb76ca087df883a68d88503e2b63bfe835624cc13</cites><orcidid>0000-0001-8049-4538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3067501847/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3067501847?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38893740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yiderigu, Jin</creatorcontrib><creatorcontrib>Yibole, Hargen</creatorcontrib><creatorcontrib>Bao, Lingbo</creatorcontrib><creatorcontrib>Bao, Lingling</creatorcontrib><creatorcontrib>Guillou, François</creatorcontrib><title>Optimizing the Sintering Conditions of (Fe,Co) 1.95 (P,Si) Compounds for Permanent Magnet Applications</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>(Fe,Co) (P,Si) quaternary compounds combine large uniaxial magnetocrystalline anisotropy, significant saturation magnetization and tunable Curie temperature, making them attractive for permanent magnet applications. Single crystals or conventionally prepared bulk polycrystalline (Fe,Co) (P,Si) samples do not, however, show a significant coercivity. Here, after a ball-milling stage of elemental precursors, we optimize the sintering temperature and duration during the solid-state synthesis of bulk Fe Co P Si compounds so as to obtain coercivity in bulk samples. We pay special attention to shortening the heat treatment in order to limit grain growth. Powder X-ray diffraction experiments demonstrate that a sintering of a few minutes is sufficient to form the desired Fe P-type hexagonal structure with limited secondary-phase content (~5 wt.%). Coercivity is achieved in bulk Fe Co P Si quaternary compounds by shortening the heat treatment. Surprisingly, the largest coercivities are observed in the samples presenting large amounts of secondary-phase content (&gt;5 wt.%). In addition to the shape of the virgin magnetization curve, this may indicate a dominant wall-pining coercivity mechanism. Despite a tenfold improvement of the coercive fields for bulk samples, the achieved performances remain modest ( ≈ 0.6 kOe at room temperature). These results nonetheless establish a benchmark for future developments of (Fe,Co) (P,Si) compounds as permanent magnets.</description><subject>Anisotropy</subject><subject>Ball milling</subject><subject>Bulk sampling</subject><subject>Cobalt</subject><subject>Coercivity</subject><subject>Curie temperature</subject><subject>Grain growth</subject><subject>Heat treatment</subject><subject>Iron</subject><subject>Magnetic saturation</subject><subject>Magnetization curves</subject><subject>Optimization</subject><subject>Permanent magnets</subject><subject>Room temperature</subject><subject>Simulation</subject><subject>Single crystals</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Temperature</subject><subject>X ray powder diffraction</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU9rFTEUxYMottRu_AAScPMqfTWZTP6tpDxaFSotVNchk7l5TZlJxmRG0E_fPFtr9W5yQ36cnMNB6DUlJ4xp8n60VFLatFI8Q_tUa7Gmum2fP9n30GEpt6QOY1Q1-iXaY0ppJluyj_zlNIcx_Apxi-cbwNchzpB3t02KfZhDigUnj1fncLxJR5ieaI5XV8fX4agS45SW2BfsU8ZXkEcbIc74i91GmPHpNA3B2d8Sr9ALb4cChw_nAfp2fvZ182l9cfnx8-b0Yu0aLeY11w2AoFxR5SyXPXTAO--476RwlijZe6WYFapXihMGTSdY50ExLprWOcoO0Id73WnpRuhdtZPtYKYcRpt_mmSD-fclhhuzTT8MpVQ2nPGqsHpQyOn7AmU2YygOhqFmS0sxjEiiCBFs99nb_9DbtORY81VKSE6oamWl3t1TLqdSMvhHN5SYXYXmb4UVfvPU_yP6pzB2BwaQlWc</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Yiderigu, Jin</creator><creator>Yibole, Hargen</creator><creator>Bao, Lingbo</creator><creator>Bao, Lingling</creator><creator>Guillou, François</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8049-4538</orcidid></search><sort><creationdate>20240521</creationdate><title>Optimizing the Sintering Conditions of (Fe,Co) 1.95 (P,Si) Compounds for Permanent Magnet Applications</title><author>Yiderigu, Jin ; Yibole, Hargen ; Bao, Lingbo ; Bao, Lingling ; Guillou, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-592ee615818ca57debe5bfc5fb76ca087df883a68d88503e2b63bfe835624cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Ball milling</topic><topic>Bulk sampling</topic><topic>Cobalt</topic><topic>Coercivity</topic><topic>Curie temperature</topic><topic>Grain growth</topic><topic>Heat treatment</topic><topic>Iron</topic><topic>Magnetic saturation</topic><topic>Magnetization curves</topic><topic>Optimization</topic><topic>Permanent magnets</topic><topic>Room temperature</topic><topic>Simulation</topic><topic>Single crystals</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Temperature</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yiderigu, Jin</creatorcontrib><creatorcontrib>Yibole, Hargen</creatorcontrib><creatorcontrib>Bao, Lingbo</creatorcontrib><creatorcontrib>Bao, Lingling</creatorcontrib><creatorcontrib>Guillou, François</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yiderigu, Jin</au><au>Yibole, Hargen</au><au>Bao, Lingbo</au><au>Bao, Lingling</au><au>Guillou, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing the Sintering Conditions of (Fe,Co) 1.95 (P,Si) Compounds for Permanent Magnet Applications</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-05-21</date><risdate>2024</risdate><volume>17</volume><issue>11</issue><spage>2476</spage><pages>2476-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>(Fe,Co) (P,Si) quaternary compounds combine large uniaxial magnetocrystalline anisotropy, significant saturation magnetization and tunable Curie temperature, making them attractive for permanent magnet applications. Single crystals or conventionally prepared bulk polycrystalline (Fe,Co) (P,Si) samples do not, however, show a significant coercivity. Here, after a ball-milling stage of elemental precursors, we optimize the sintering temperature and duration during the solid-state synthesis of bulk Fe Co P Si compounds so as to obtain coercivity in bulk samples. We pay special attention to shortening the heat treatment in order to limit grain growth. Powder X-ray diffraction experiments demonstrate that a sintering of a few minutes is sufficient to form the desired Fe P-type hexagonal structure with limited secondary-phase content (~5 wt.%). Coercivity is achieved in bulk Fe Co P Si quaternary compounds by shortening the heat treatment. Surprisingly, the largest coercivities are observed in the samples presenting large amounts of secondary-phase content (&gt;5 wt.%). In addition to the shape of the virgin magnetization curve, this may indicate a dominant wall-pining coercivity mechanism. Despite a tenfold improvement of the coercive fields for bulk samples, the achieved performances remain modest ( ≈ 0.6 kOe at room temperature). These results nonetheless establish a benchmark for future developments of (Fe,Co) (P,Si) compounds as permanent magnets.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38893740</pmid><doi>10.3390/ma17112476</doi><orcidid>https://orcid.org/0000-0001-8049-4538</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-05, Vol.17 (11), p.2476
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11172535
source Publicly Available Content Database; PubMed Central (PMC); Free Full-Text Journals in Chemistry
subjects Anisotropy
Ball milling
Bulk sampling
Cobalt
Coercivity
Curie temperature
Grain growth
Heat treatment
Iron
Magnetic saturation
Magnetization curves
Optimization
Permanent magnets
Room temperature
Simulation
Single crystals
Sintering
Sintering (powder metallurgy)
Temperature
X ray powder diffraction
title Optimizing the Sintering Conditions of (Fe,Co) 1.95 (P,Si) Compounds for Permanent Magnet Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20the%20Sintering%20Conditions%20of%20(Fe,Co)%201.95%20(P,Si)%20Compounds%20for%20Permanent%20Magnet%20Applications&rft.jtitle=Materials&rft.au=Yiderigu,%20Jin&rft.date=2024-05-21&rft.volume=17&rft.issue=11&rft.spage=2476&rft.pages=2476-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17112476&rft_dat=%3Cproquest_pubme%3E3067501847%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-592ee615818ca57debe5bfc5fb76ca087df883a68d88503e2b63bfe835624cc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067501847&rft_id=info:pmid/38893740&rfr_iscdi=true