Loading…

Memory-less scattering imaging with ultrafast convolutional optical neural networks

The optical memory effect in complex scattering media including turbid tissue and speckle layers has been a critical foundation for macroscopic and microscopic imaging methods. However, image reconstruction from strong scattering media without the optical memory effect has not been achieved. Here, w...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2024-06, Vol.10 (24), p.eadn2205
Main Authors: Zhang, Yuchao, Zhang, Qiming, Yu, Haoyi, Zhang, Yinan, Luan, Haitao, Gu, Min
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c282t-1e621d19d53383ca0b02b17fb3e6cb1e887a65040e7ef626db91b414a3a06d533
cites
container_end_page
container_issue 24
container_start_page eadn2205
container_title Science advances
container_volume 10
creator Zhang, Yuchao
Zhang, Qiming
Yu, Haoyi
Zhang, Yinan
Luan, Haitao
Gu, Min
description The optical memory effect in complex scattering media including turbid tissue and speckle layers has been a critical foundation for macroscopic and microscopic imaging methods. However, image reconstruction from strong scattering media without the optical memory effect has not been achieved. Here, we demonstrate image reconstruction through scattering layers where no optical memory effect exists, by developing a multistage convolutional optical neural network (ONN) integrated with multiple parallel kernels operating at the speed of light. Training this Fourier optics-based, parallel, one-step convolutional ONN with the strong scattering process for direct feature extraction, we achieve memory-less image reconstruction with a field of view enlarged by a factor up to 271. This device is dynamically reconfigurable for ultrafast multitask image reconstruction with a computational power of 1.57 peta-operations per second (POPS). Our achievement establishes an ultrafast and high energy-efficient optical machine learning platform for graphic processing.
doi_str_mv 10.1126/sciadv.adn2205
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11177939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068755260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-1e621d19d53383ca0b02b17fb3e6cb1e887a65040e7ef626db91b414a3a06d533</originalsourceid><addsrcrecordid>eNpVkL1PwzAQxS0EolXpyogysqT47MRJJoQqvqQiBmCOHMdpDa5dbKdV_3tcKKhMv5Pu7r2nh9A54AkAYVdeKN6uJ7w1hOD8CA0JLfKU5Fl5fDAP0Nj7d4wxZIzlUJ2iAS3LIqe0GKKXJ7m0bptq6X3iBQ9BOmXmiVry-Y4bFRZJr4PjHfchEdasre6DsobrxK6CEpFG9u4bYWPdhz9DJx3XXo73HKG3u9vX6UM6e75_nN7MUkFKElKQjEALVRuTlFRw3GDSQNE1VDLRgIwZOctxhmUhO0ZY21TQZJBxyjHbPY3Q9Y_uqm-WshXSxJi6XrkY3m1ry1X9f2PUop7bdQ0ARVHRKipc7hWc_eylD_VSeSG15kba3tcUs1hUThiOpxeHZn8uv1XSL1jXeno</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068755260</pqid></control><display><type>article</type><title>Memory-less scattering imaging with ultrafast convolutional optical neural networks</title><source>American Association for the Advancement of Science</source><source>PubMed (Medline)</source><creator>Zhang, Yuchao ; Zhang, Qiming ; Yu, Haoyi ; Zhang, Yinan ; Luan, Haitao ; Gu, Min</creator><creatorcontrib>Zhang, Yuchao ; Zhang, Qiming ; Yu, Haoyi ; Zhang, Yinan ; Luan, Haitao ; Gu, Min</creatorcontrib><description>The optical memory effect in complex scattering media including turbid tissue and speckle layers has been a critical foundation for macroscopic and microscopic imaging methods. However, image reconstruction from strong scattering media without the optical memory effect has not been achieved. Here, we demonstrate image reconstruction through scattering layers where no optical memory effect exists, by developing a multistage convolutional optical neural network (ONN) integrated with multiple parallel kernels operating at the speed of light. Training this Fourier optics-based, parallel, one-step convolutional ONN with the strong scattering process for direct feature extraction, we achieve memory-less image reconstruction with a field of view enlarged by a factor up to 271. This device is dynamically reconfigurable for ultrafast multitask image reconstruction with a computational power of 1.57 peta-operations per second (POPS). Our achievement establishes an ultrafast and high energy-efficient optical machine learning platform for graphic processing.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adn2205</identifier><identifier>PMID: 38875337</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Physics ; Optics ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2024-06, Vol.10 (24), p.eadn2205</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-1e621d19d53383ca0b02b17fb3e6cb1e887a65040e7ef626db91b414a3a06d533</citedby><orcidid>0000-0002-4538-4170 ; 0009-0005-5619-9201 ; 0000-0003-0067-1210 ; 0000-0003-4078-253X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177939/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177939/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38875337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuchao</creatorcontrib><creatorcontrib>Zhang, Qiming</creatorcontrib><creatorcontrib>Yu, Haoyi</creatorcontrib><creatorcontrib>Zhang, Yinan</creatorcontrib><creatorcontrib>Luan, Haitao</creatorcontrib><creatorcontrib>Gu, Min</creatorcontrib><title>Memory-less scattering imaging with ultrafast convolutional optical neural networks</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The optical memory effect in complex scattering media including turbid tissue and speckle layers has been a critical foundation for macroscopic and microscopic imaging methods. However, image reconstruction from strong scattering media without the optical memory effect has not been achieved. Here, we demonstrate image reconstruction through scattering layers where no optical memory effect exists, by developing a multistage convolutional optical neural network (ONN) integrated with multiple parallel kernels operating at the speed of light. Training this Fourier optics-based, parallel, one-step convolutional ONN with the strong scattering process for direct feature extraction, we achieve memory-less image reconstruction with a field of view enlarged by a factor up to 271. This device is dynamically reconfigurable for ultrafast multitask image reconstruction with a computational power of 1.57 peta-operations per second (POPS). Our achievement establishes an ultrafast and high energy-efficient optical machine learning platform for graphic processing.</description><subject>Applied Physics</subject><subject>Optics</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkL1PwzAQxS0EolXpyogysqT47MRJJoQqvqQiBmCOHMdpDa5dbKdV_3tcKKhMv5Pu7r2nh9A54AkAYVdeKN6uJ7w1hOD8CA0JLfKU5Fl5fDAP0Nj7d4wxZIzlUJ2iAS3LIqe0GKKXJ7m0bptq6X3iBQ9BOmXmiVry-Y4bFRZJr4PjHfchEdasre6DsobrxK6CEpFG9u4bYWPdhz9DJx3XXo73HKG3u9vX6UM6e75_nN7MUkFKElKQjEALVRuTlFRw3GDSQNE1VDLRgIwZOctxhmUhO0ZY21TQZJBxyjHbPY3Q9Y_uqm-WshXSxJi6XrkY3m1ry1X9f2PUop7bdQ0ARVHRKipc7hWc_eylD_VSeSG15kba3tcUs1hUThiOpxeHZn8uv1XSL1jXeno</recordid><startdate>20240614</startdate><enddate>20240614</enddate><creator>Zhang, Yuchao</creator><creator>Zhang, Qiming</creator><creator>Yu, Haoyi</creator><creator>Zhang, Yinan</creator><creator>Luan, Haitao</creator><creator>Gu, Min</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4538-4170</orcidid><orcidid>https://orcid.org/0009-0005-5619-9201</orcidid><orcidid>https://orcid.org/0000-0003-0067-1210</orcidid><orcidid>https://orcid.org/0000-0003-4078-253X</orcidid></search><sort><creationdate>20240614</creationdate><title>Memory-less scattering imaging with ultrafast convolutional optical neural networks</title><author>Zhang, Yuchao ; Zhang, Qiming ; Yu, Haoyi ; Zhang, Yinan ; Luan, Haitao ; Gu, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-1e621d19d53383ca0b02b17fb3e6cb1e887a65040e7ef626db91b414a3a06d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied Physics</topic><topic>Optics</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuchao</creatorcontrib><creatorcontrib>Zhang, Qiming</creatorcontrib><creatorcontrib>Yu, Haoyi</creatorcontrib><creatorcontrib>Zhang, Yinan</creatorcontrib><creatorcontrib>Luan, Haitao</creatorcontrib><creatorcontrib>Gu, Min</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuchao</au><au>Zhang, Qiming</au><au>Yu, Haoyi</au><au>Zhang, Yinan</au><au>Luan, Haitao</au><au>Gu, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memory-less scattering imaging with ultrafast convolutional optical neural networks</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-06-14</date><risdate>2024</risdate><volume>10</volume><issue>24</issue><spage>eadn2205</spage><pages>eadn2205-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The optical memory effect in complex scattering media including turbid tissue and speckle layers has been a critical foundation for macroscopic and microscopic imaging methods. However, image reconstruction from strong scattering media without the optical memory effect has not been achieved. Here, we demonstrate image reconstruction through scattering layers where no optical memory effect exists, by developing a multistage convolutional optical neural network (ONN) integrated with multiple parallel kernels operating at the speed of light. Training this Fourier optics-based, parallel, one-step convolutional ONN with the strong scattering process for direct feature extraction, we achieve memory-less image reconstruction with a field of view enlarged by a factor up to 271. This device is dynamically reconfigurable for ultrafast multitask image reconstruction with a computational power of 1.57 peta-operations per second (POPS). Our achievement establishes an ultrafast and high energy-efficient optical machine learning platform for graphic processing.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>38875337</pmid><doi>10.1126/sciadv.adn2205</doi><orcidid>https://orcid.org/0000-0002-4538-4170</orcidid><orcidid>https://orcid.org/0009-0005-5619-9201</orcidid><orcidid>https://orcid.org/0000-0003-0067-1210</orcidid><orcidid>https://orcid.org/0000-0003-4078-253X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2024-06, Vol.10 (24), p.eadn2205
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11177939
source American Association for the Advancement of Science; PubMed (Medline)
subjects Applied Physics
Optics
Physical and Materials Sciences
SciAdv r-articles
title Memory-less scattering imaging with ultrafast convolutional optical neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memory-less%20scattering%20imaging%20with%20ultrafast%20convolutional%20optical%20neural%20networks&rft.jtitle=Science%20advances&rft.au=Zhang,%20Yuchao&rft.date=2024-06-14&rft.volume=10&rft.issue=24&rft.spage=eadn2205&rft.pages=eadn2205-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adn2205&rft_dat=%3Cproquest_pubme%3E3068755260%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-1e621d19d53383ca0b02b17fb3e6cb1e887a65040e7ef626db91b414a3a06d533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068755260&rft_id=info:pmid/38875337&rfr_iscdi=true