Loading…
Adapted generative latent diffusion models for accurate pathological analysis in chest X-ray images
Respiratory diseases have a significant global impact, and assessing these conditions is crucial for improving patient outcomes. Chest X-ray is widely used for diagnosis, but expert evaluation can be challenging. Automatic computer-aided diagnosis methods can provide support for clinicians in these...
Saved in:
Published in: | Medical & biological engineering & computing 2024-07, Vol.62 (7), p.2189-2212 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c459t-b8d4d5a5a6c4be2fd0f0ec69aa443ed47470ae1df4f91c50daa8606ad4b5d2943 |
container_end_page | 2212 |
container_issue | 7 |
container_start_page | 2189 |
container_title | Medical & biological engineering & computing |
container_volume | 62 |
creator | Morís, Daniel I. Moura, Joaquim de Novo, Jorge Ortega, Marcos |
description | Respiratory diseases have a significant global impact, and assessing these conditions is crucial for improving patient outcomes. Chest X-ray is widely used for diagnosis, but expert evaluation can be challenging. Automatic computer-aided diagnosis methods can provide support for clinicians in these tasks. Deep learning has emerged as a set of algorithms with exceptional potential in such tasks. However, these algorithms require a vast amount of data, often scarce in medical imaging domains. In this work, a new data augmentation methodology based on adapted generative latent diffusion models is proposed to improve the performance of an automatic pathological screening in two high-impact scenarios: tuberculosis and lung nodules. The methodology is evaluated using three publicly available datasets, representative of real-world settings. An ablation study obtained the highest-performing image generation model configuration regarding the number of training steps. The results demonstrate that the novel set of generated images can improve the performance of the screening of these two highly relevant pathologies, obtaining an accuracy of 97.09%, 92.14% in each dataset of tuberculosis screening, respectively, and 82.19% in lung nodules. The proposal notably improves on previous image generation methods for data augmentation, highlighting the importance of the contribution in these critical public health challenges.
Graphical abstract |
doi_str_mv | 10.1007/s11517-024-03056-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11190015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2968921187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-b8d4d5a5a6c4be2fd0f0ec69aa443ed47470ae1df4f91c50daa8606ad4b5d2943</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhH-CALHHhEhgn4yQ-oaoqH1IlLiBxs2btya6rbLzYSaX97_GypXwc4OTD_Ob5vXlCPFfwWgF0b7JSWnUV1FhBA7qt9AOxUh2qChDxoViBQqhAqf5MPMn5BqBWusbH4qzp0RiD7Uq4C0_7mb3c8MSJ5nDLcqSZp1n6MAxLDnGSu-h5zHKISZJzS8FY7mnexjFugqNR0kTjIYcswyTdlvMsv1aJDjLsaMP5qXg00Jj52d17Lr68u_p8-aG6_vT-4-XFdeVQm7la9x69Jk2twzXXg4cB2LWGCLFhjx12QKz8gINRToMn6ltoyeNa-9pgcy7ennT3y3rH3pUQiUa7T8VGOthIwf45mcLWbuKtVUoZAKWLwqs7hRS_LSWH3YXseBxp4rhk2xSmbcv16v-itWl7U5fbdwV9-Rd6E5dUTlYEoTv20zdH9_WJcinmnHi4N67AHvu2p75t6dv-6NseDb_4PfL9ys-CC9CcgFxG04bTr7__Ifsdg2C30w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070118834</pqid></control><display><type>article</type><title>Adapted generative latent diffusion models for accurate pathological analysis in chest X-ray images</title><source>Springer Nature</source><creator>Morís, Daniel I. ; Moura, Joaquim de ; Novo, Jorge ; Ortega, Marcos</creator><creatorcontrib>Morís, Daniel I. ; Moura, Joaquim de ; Novo, Jorge ; Ortega, Marcos</creatorcontrib><description>Respiratory diseases have a significant global impact, and assessing these conditions is crucial for improving patient outcomes. Chest X-ray is widely used for diagnosis, but expert evaluation can be challenging. Automatic computer-aided diagnosis methods can provide support for clinicians in these tasks. Deep learning has emerged as a set of algorithms with exceptional potential in such tasks. However, these algorithms require a vast amount of data, often scarce in medical imaging domains. In this work, a new data augmentation methodology based on adapted generative latent diffusion models is proposed to improve the performance of an automatic pathological screening in two high-impact scenarios: tuberculosis and lung nodules. The methodology is evaluated using three publicly available datasets, representative of real-world settings. An ablation study obtained the highest-performing image generation model configuration regarding the number of training steps. The results demonstrate that the novel set of generated images can improve the performance of the screening of these two highly relevant pathologies, obtaining an accuracy of 97.09%, 92.14% in each dataset of tuberculosis screening, respectively, and 82.19% in lung nodules. The proposal notably improves on previous image generation methods for data augmentation, highlighting the importance of the contribution in these critical public health challenges.
Graphical abstract</description><identifier>ISSN: 0140-0118</identifier><identifier>ISSN: 1741-0444</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-024-03056-5</identifier><identifier>PMID: 38499946</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ablation ; Algorithms ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Chest ; Computer Applications ; Data augmentation ; data collection ; Datasets ; Deep learning ; Diagnosis ; Diffusion models ; expert opinion ; Human Physiology ; Image processing ; Imaging ; Lung nodules ; Lungs ; Machine learning ; Medical imaging ; Nodules ; Original ; Original Article ; Performance enhancement ; Public health ; Radiology ; Respiratory diseases ; Tuberculosis ; X-radiation</subject><ispartof>Medical & biological engineering & computing, 2024-07, Vol.62 (7), p.2189-2212</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c459t-b8d4d5a5a6c4be2fd0f0ec69aa443ed47470ae1df4f91c50daa8606ad4b5d2943</cites><orcidid>0000-0002-2050-3786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38499946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morís, Daniel I.</creatorcontrib><creatorcontrib>Moura, Joaquim de</creatorcontrib><creatorcontrib>Novo, Jorge</creatorcontrib><creatorcontrib>Ortega, Marcos</creatorcontrib><title>Adapted generative latent diffusion models for accurate pathological analysis in chest X-ray images</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Respiratory diseases have a significant global impact, and assessing these conditions is crucial for improving patient outcomes. Chest X-ray is widely used for diagnosis, but expert evaluation can be challenging. Automatic computer-aided diagnosis methods can provide support for clinicians in these tasks. Deep learning has emerged as a set of algorithms with exceptional potential in such tasks. However, these algorithms require a vast amount of data, often scarce in medical imaging domains. In this work, a new data augmentation methodology based on adapted generative latent diffusion models is proposed to improve the performance of an automatic pathological screening in two high-impact scenarios: tuberculosis and lung nodules. The methodology is evaluated using three publicly available datasets, representative of real-world settings. An ablation study obtained the highest-performing image generation model configuration regarding the number of training steps. The results demonstrate that the novel set of generated images can improve the performance of the screening of these two highly relevant pathologies, obtaining an accuracy of 97.09%, 92.14% in each dataset of tuberculosis screening, respectively, and 82.19% in lung nodules. The proposal notably improves on previous image generation methods for data augmentation, highlighting the importance of the contribution in these critical public health challenges.
Graphical abstract</description><subject>Ablation</subject><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Chest</subject><subject>Computer Applications</subject><subject>Data augmentation</subject><subject>data collection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Diffusion models</subject><subject>expert opinion</subject><subject>Human Physiology</subject><subject>Image processing</subject><subject>Imaging</subject><subject>Lung nodules</subject><subject>Lungs</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Nodules</subject><subject>Original</subject><subject>Original Article</subject><subject>Performance enhancement</subject><subject>Public health</subject><subject>Radiology</subject><subject>Respiratory diseases</subject><subject>Tuberculosis</subject><subject>X-radiation</subject><issn>0140-0118</issn><issn>1741-0444</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxS0EokvhH-CALHHhEhgn4yQ-oaoqH1IlLiBxs2btya6rbLzYSaX97_GypXwc4OTD_Ob5vXlCPFfwWgF0b7JSWnUV1FhBA7qt9AOxUh2qChDxoViBQqhAqf5MPMn5BqBWusbH4qzp0RiD7Uq4C0_7mb3c8MSJ5nDLcqSZp1n6MAxLDnGSu-h5zHKISZJzS8FY7mnexjFugqNR0kTjIYcswyTdlvMsv1aJDjLsaMP5qXg00Jj52d17Lr68u_p8-aG6_vT-4-XFdeVQm7la9x69Jk2twzXXg4cB2LWGCLFhjx12QKz8gINRToMn6ltoyeNa-9pgcy7ennT3y3rH3pUQiUa7T8VGOthIwf45mcLWbuKtVUoZAKWLwqs7hRS_LSWH3YXseBxp4rhk2xSmbcv16v-itWl7U5fbdwV9-Rd6E5dUTlYEoTv20zdH9_WJcinmnHi4N67AHvu2p75t6dv-6NseDb_4PfL9ys-CC9CcgFxG04bTr7__Ifsdg2C30w</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Morís, Daniel I.</creator><creator>Moura, Joaquim de</creator><creator>Novo, Jorge</creator><creator>Ortega, Marcos</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2050-3786</orcidid></search><sort><creationdate>20240701</creationdate><title>Adapted generative latent diffusion models for accurate pathological analysis in chest X-ray images</title><author>Morís, Daniel I. ; Moura, Joaquim de ; Novo, Jorge ; Ortega, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-b8d4d5a5a6c4be2fd0f0ec69aa443ed47470ae1df4f91c50daa8606ad4b5d2943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Chest</topic><topic>Computer Applications</topic><topic>Data augmentation</topic><topic>data collection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Diffusion models</topic><topic>expert opinion</topic><topic>Human Physiology</topic><topic>Image processing</topic><topic>Imaging</topic><topic>Lung nodules</topic><topic>Lungs</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Nodules</topic><topic>Original</topic><topic>Original Article</topic><topic>Performance enhancement</topic><topic>Public health</topic><topic>Radiology</topic><topic>Respiratory diseases</topic><topic>Tuberculosis</topic><topic>X-radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morís, Daniel I.</creatorcontrib><creatorcontrib>Moura, Joaquim de</creatorcontrib><creatorcontrib>Novo, Jorge</creatorcontrib><creatorcontrib>Ortega, Marcos</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morís, Daniel I.</au><au>Moura, Joaquim de</au><au>Novo, Jorge</au><au>Ortega, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adapted generative latent diffusion models for accurate pathological analysis in chest X-ray images</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>62</volume><issue>7</issue><spage>2189</spage><epage>2212</epage><pages>2189-2212</pages><issn>0140-0118</issn><issn>1741-0444</issn><eissn>1741-0444</eissn><abstract>Respiratory diseases have a significant global impact, and assessing these conditions is crucial for improving patient outcomes. Chest X-ray is widely used for diagnosis, but expert evaluation can be challenging. Automatic computer-aided diagnosis methods can provide support for clinicians in these tasks. Deep learning has emerged as a set of algorithms with exceptional potential in such tasks. However, these algorithms require a vast amount of data, often scarce in medical imaging domains. In this work, a new data augmentation methodology based on adapted generative latent diffusion models is proposed to improve the performance of an automatic pathological screening in two high-impact scenarios: tuberculosis and lung nodules. The methodology is evaluated using three publicly available datasets, representative of real-world settings. An ablation study obtained the highest-performing image generation model configuration regarding the number of training steps. The results demonstrate that the novel set of generated images can improve the performance of the screening of these two highly relevant pathologies, obtaining an accuracy of 97.09%, 92.14% in each dataset of tuberculosis screening, respectively, and 82.19% in lung nodules. The proposal notably improves on previous image generation methods for data augmentation, highlighting the importance of the contribution in these critical public health challenges.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38499946</pmid><doi>10.1007/s11517-024-03056-5</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-2050-3786</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2024-07, Vol.62 (7), p.2189-2212 |
issn | 0140-0118 1741-0444 1741-0444 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11190015 |
source | Springer Nature |
subjects | Ablation Algorithms Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Chest Computer Applications Data augmentation data collection Datasets Deep learning Diagnosis Diffusion models expert opinion Human Physiology Image processing Imaging Lung nodules Lungs Machine learning Medical imaging Nodules Original Original Article Performance enhancement Public health Radiology Respiratory diseases Tuberculosis X-radiation |
title | Adapted generative latent diffusion models for accurate pathological analysis in chest X-ray images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adapted%20generative%20latent%20diffusion%20models%20for%20accurate%20pathological%20analysis%20in%20chest%20X-ray%20images&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Mor%C3%ADs,%20Daniel%20I.&rft.date=2024-07-01&rft.volume=62&rft.issue=7&rft.spage=2189&rft.epage=2212&rft.pages=2189-2212&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-024-03056-5&rft_dat=%3Cproquest_pubme%3E2968921187%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-b8d4d5a5a6c4be2fd0f0ec69aa443ed47470ae1df4f91c50daa8606ad4b5d2943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070118834&rft_id=info:pmid/38499946&rfr_iscdi=true |