Loading…

Adapted generative latent diffusion models for accurate pathological analysis in chest X-ray images

Respiratory diseases have a significant global impact, and assessing these conditions is crucial for improving patient outcomes. Chest X-ray is widely used for diagnosis, but expert evaluation can be challenging. Automatic computer-aided diagnosis methods can provide support for clinicians in these...

Full description

Saved in:
Bibliographic Details
Published in:Medical & biological engineering & computing 2024-07, Vol.62 (7), p.2189-2212
Main Authors: Morís, Daniel I., Moura, Joaquim de, Novo, Jorge, Ortega, Marcos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c459t-b8d4d5a5a6c4be2fd0f0ec69aa443ed47470ae1df4f91c50daa8606ad4b5d2943
container_end_page 2212
container_issue 7
container_start_page 2189
container_title Medical & biological engineering & computing
container_volume 62
creator Morís, Daniel I.
Moura, Joaquim de
Novo, Jorge
Ortega, Marcos
description Respiratory diseases have a significant global impact, and assessing these conditions is crucial for improving patient outcomes. Chest X-ray is widely used for diagnosis, but expert evaluation can be challenging. Automatic computer-aided diagnosis methods can provide support for clinicians in these tasks. Deep learning has emerged as a set of algorithms with exceptional potential in such tasks. However, these algorithms require a vast amount of data, often scarce in medical imaging domains. In this work, a new data augmentation methodology based on adapted generative latent diffusion models is proposed to improve the performance of an automatic pathological screening in two high-impact scenarios: tuberculosis and lung nodules. The methodology is evaluated using three publicly available datasets, representative of real-world settings. An ablation study obtained the highest-performing image generation model configuration regarding the number of training steps. The results demonstrate that the novel set of generated images can improve the performance of the screening of these two highly relevant pathologies, obtaining an accuracy of 97.09%, 92.14% in each dataset of tuberculosis screening, respectively, and 82.19% in lung nodules. The proposal notably improves on previous image generation methods for data augmentation, highlighting the importance of the contribution in these critical public health challenges. Graphical abstract
doi_str_mv 10.1007/s11517-024-03056-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11190015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2968921187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-b8d4d5a5a6c4be2fd0f0ec69aa443ed47470ae1df4f91c50daa8606ad4b5d2943</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhH-CALHHhEhgn4yQ-oaoqH1IlLiBxs2btya6rbLzYSaX97_GypXwc4OTD_Ob5vXlCPFfwWgF0b7JSWnUV1FhBA7qt9AOxUh2qChDxoViBQqhAqf5MPMn5BqBWusbH4qzp0RiD7Uq4C0_7mb3c8MSJ5nDLcqSZp1n6MAxLDnGSu-h5zHKISZJzS8FY7mnexjFugqNR0kTjIYcswyTdlvMsv1aJDjLsaMP5qXg00Jj52d17Lr68u_p8-aG6_vT-4-XFdeVQm7la9x69Jk2twzXXg4cB2LWGCLFhjx12QKz8gINRToMn6ltoyeNa-9pgcy7ennT3y3rH3pUQiUa7T8VGOthIwf45mcLWbuKtVUoZAKWLwqs7hRS_LSWH3YXseBxp4rhk2xSmbcv16v-itWl7U5fbdwV9-Rd6E5dUTlYEoTv20zdH9_WJcinmnHi4N67AHvu2p75t6dv-6NseDb_4PfL9ys-CC9CcgFxG04bTr7__Ifsdg2C30w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070118834</pqid></control><display><type>article</type><title>Adapted generative latent diffusion models for accurate pathological analysis in chest X-ray images</title><source>Springer Nature</source><creator>Morís, Daniel I. ; Moura, Joaquim de ; Novo, Jorge ; Ortega, Marcos</creator><creatorcontrib>Morís, Daniel I. ; Moura, Joaquim de ; Novo, Jorge ; Ortega, Marcos</creatorcontrib><description>Respiratory diseases have a significant global impact, and assessing these conditions is crucial for improving patient outcomes. Chest X-ray is widely used for diagnosis, but expert evaluation can be challenging. Automatic computer-aided diagnosis methods can provide support for clinicians in these tasks. Deep learning has emerged as a set of algorithms with exceptional potential in such tasks. However, these algorithms require a vast amount of data, often scarce in medical imaging domains. In this work, a new data augmentation methodology based on adapted generative latent diffusion models is proposed to improve the performance of an automatic pathological screening in two high-impact scenarios: tuberculosis and lung nodules. The methodology is evaluated using three publicly available datasets, representative of real-world settings. An ablation study obtained the highest-performing image generation model configuration regarding the number of training steps. The results demonstrate that the novel set of generated images can improve the performance of the screening of these two highly relevant pathologies, obtaining an accuracy of 97.09%, 92.14% in each dataset of tuberculosis screening, respectively, and 82.19% in lung nodules. The proposal notably improves on previous image generation methods for data augmentation, highlighting the importance of the contribution in these critical public health challenges. Graphical abstract</description><identifier>ISSN: 0140-0118</identifier><identifier>ISSN: 1741-0444</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-024-03056-5</identifier><identifier>PMID: 38499946</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ablation ; Algorithms ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Chest ; Computer Applications ; Data augmentation ; data collection ; Datasets ; Deep learning ; Diagnosis ; Diffusion models ; expert opinion ; Human Physiology ; Image processing ; Imaging ; Lung nodules ; Lungs ; Machine learning ; Medical imaging ; Nodules ; Original ; Original Article ; Performance enhancement ; Public health ; Radiology ; Respiratory diseases ; Tuberculosis ; X-radiation</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2024-07, Vol.62 (7), p.2189-2212</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c459t-b8d4d5a5a6c4be2fd0f0ec69aa443ed47470ae1df4f91c50daa8606ad4b5d2943</cites><orcidid>0000-0002-2050-3786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38499946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morís, Daniel I.</creatorcontrib><creatorcontrib>Moura, Joaquim de</creatorcontrib><creatorcontrib>Novo, Jorge</creatorcontrib><creatorcontrib>Ortega, Marcos</creatorcontrib><title>Adapted generative latent diffusion models for accurate pathological analysis in chest X-ray images</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Respiratory diseases have a significant global impact, and assessing these conditions is crucial for improving patient outcomes. Chest X-ray is widely used for diagnosis, but expert evaluation can be challenging. Automatic computer-aided diagnosis methods can provide support for clinicians in these tasks. Deep learning has emerged as a set of algorithms with exceptional potential in such tasks. However, these algorithms require a vast amount of data, often scarce in medical imaging domains. In this work, a new data augmentation methodology based on adapted generative latent diffusion models is proposed to improve the performance of an automatic pathological screening in two high-impact scenarios: tuberculosis and lung nodules. The methodology is evaluated using three publicly available datasets, representative of real-world settings. An ablation study obtained the highest-performing image generation model configuration regarding the number of training steps. The results demonstrate that the novel set of generated images can improve the performance of the screening of these two highly relevant pathologies, obtaining an accuracy of 97.09%, 92.14% in each dataset of tuberculosis screening, respectively, and 82.19% in lung nodules. The proposal notably improves on previous image generation methods for data augmentation, highlighting the importance of the contribution in these critical public health challenges. Graphical abstract</description><subject>Ablation</subject><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Chest</subject><subject>Computer Applications</subject><subject>Data augmentation</subject><subject>data collection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Diffusion models</subject><subject>expert opinion</subject><subject>Human Physiology</subject><subject>Image processing</subject><subject>Imaging</subject><subject>Lung nodules</subject><subject>Lungs</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Nodules</subject><subject>Original</subject><subject>Original Article</subject><subject>Performance enhancement</subject><subject>Public health</subject><subject>Radiology</subject><subject>Respiratory diseases</subject><subject>Tuberculosis</subject><subject>X-radiation</subject><issn>0140-0118</issn><issn>1741-0444</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxS0EokvhH-CALHHhEhgn4yQ-oaoqH1IlLiBxs2btya6rbLzYSaX97_GypXwc4OTD_Ob5vXlCPFfwWgF0b7JSWnUV1FhBA7qt9AOxUh2qChDxoViBQqhAqf5MPMn5BqBWusbH4qzp0RiD7Uq4C0_7mb3c8MSJ5nDLcqSZp1n6MAxLDnGSu-h5zHKISZJzS8FY7mnexjFugqNR0kTjIYcswyTdlvMsv1aJDjLsaMP5qXg00Jj52d17Lr68u_p8-aG6_vT-4-XFdeVQm7la9x69Jk2twzXXg4cB2LWGCLFhjx12QKz8gINRToMn6ltoyeNa-9pgcy7ennT3y3rH3pUQiUa7T8VGOthIwf45mcLWbuKtVUoZAKWLwqs7hRS_LSWH3YXseBxp4rhk2xSmbcv16v-itWl7U5fbdwV9-Rd6E5dUTlYEoTv20zdH9_WJcinmnHi4N67AHvu2p75t6dv-6NseDb_4PfL9ys-CC9CcgFxG04bTr7__Ifsdg2C30w</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Morís, Daniel I.</creator><creator>Moura, Joaquim de</creator><creator>Novo, Jorge</creator><creator>Ortega, Marcos</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2050-3786</orcidid></search><sort><creationdate>20240701</creationdate><title>Adapted generative latent diffusion models for accurate pathological analysis in chest X-ray images</title><author>Morís, Daniel I. ; Moura, Joaquim de ; Novo, Jorge ; Ortega, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-b8d4d5a5a6c4be2fd0f0ec69aa443ed47470ae1df4f91c50daa8606ad4b5d2943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Chest</topic><topic>Computer Applications</topic><topic>Data augmentation</topic><topic>data collection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Diffusion models</topic><topic>expert opinion</topic><topic>Human Physiology</topic><topic>Image processing</topic><topic>Imaging</topic><topic>Lung nodules</topic><topic>Lungs</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Nodules</topic><topic>Original</topic><topic>Original Article</topic><topic>Performance enhancement</topic><topic>Public health</topic><topic>Radiology</topic><topic>Respiratory diseases</topic><topic>Tuberculosis</topic><topic>X-radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morís, Daniel I.</creatorcontrib><creatorcontrib>Moura, Joaquim de</creatorcontrib><creatorcontrib>Novo, Jorge</creatorcontrib><creatorcontrib>Ortega, Marcos</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morís, Daniel I.</au><au>Moura, Joaquim de</au><au>Novo, Jorge</au><au>Ortega, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adapted generative latent diffusion models for accurate pathological analysis in chest X-ray images</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>62</volume><issue>7</issue><spage>2189</spage><epage>2212</epage><pages>2189-2212</pages><issn>0140-0118</issn><issn>1741-0444</issn><eissn>1741-0444</eissn><abstract>Respiratory diseases have a significant global impact, and assessing these conditions is crucial for improving patient outcomes. Chest X-ray is widely used for diagnosis, but expert evaluation can be challenging. Automatic computer-aided diagnosis methods can provide support for clinicians in these tasks. Deep learning has emerged as a set of algorithms with exceptional potential in such tasks. However, these algorithms require a vast amount of data, often scarce in medical imaging domains. In this work, a new data augmentation methodology based on adapted generative latent diffusion models is proposed to improve the performance of an automatic pathological screening in two high-impact scenarios: tuberculosis and lung nodules. The methodology is evaluated using three publicly available datasets, representative of real-world settings. An ablation study obtained the highest-performing image generation model configuration regarding the number of training steps. The results demonstrate that the novel set of generated images can improve the performance of the screening of these two highly relevant pathologies, obtaining an accuracy of 97.09%, 92.14% in each dataset of tuberculosis screening, respectively, and 82.19% in lung nodules. The proposal notably improves on previous image generation methods for data augmentation, highlighting the importance of the contribution in these critical public health challenges. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38499946</pmid><doi>10.1007/s11517-024-03056-5</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-2050-3786</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2024-07, Vol.62 (7), p.2189-2212
issn 0140-0118
1741-0444
1741-0444
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11190015
source Springer Nature
subjects Ablation
Algorithms
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Chest
Computer Applications
Data augmentation
data collection
Datasets
Deep learning
Diagnosis
Diffusion models
expert opinion
Human Physiology
Image processing
Imaging
Lung nodules
Lungs
Machine learning
Medical imaging
Nodules
Original
Original Article
Performance enhancement
Public health
Radiology
Respiratory diseases
Tuberculosis
X-radiation
title Adapted generative latent diffusion models for accurate pathological analysis in chest X-ray images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adapted%20generative%20latent%20diffusion%20models%20for%20accurate%20pathological%20analysis%20in%20chest%20X-ray%20images&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Mor%C3%ADs,%20Daniel%20I.&rft.date=2024-07-01&rft.volume=62&rft.issue=7&rft.spage=2189&rft.epage=2212&rft.pages=2189-2212&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-024-03056-5&rft_dat=%3Cproquest_pubme%3E2968921187%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-b8d4d5a5a6c4be2fd0f0ec69aa443ed47470ae1df4f91c50daa8606ad4b5d2943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070118834&rft_id=info:pmid/38499946&rfr_iscdi=true