Loading…
Two residues in the DNA binding site of Pif1 helicase are essential for nuclear functions but dispensable for mitochondrial respiratory growth
Pif1 helicase functions in both the nucleus and mitochondria. Pif1 tightly couples ATP hydrolysis, single-stranded DNA translocation, and duplex DNA unwinding. We investigated two Pif1 variants (F723A and T464A) that have each lost one site of interaction of the protein with the DNA substrate. Both...
Saved in:
Published in: | Nucleic acids research 2024-06, Vol.52 (11), p.6543-6557 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-d0a7e94cfd7d052c70a77117d5ec1624cd52dfcaf3d8fd5bf88d22e4db8708eb3 |
container_end_page | 6557 |
container_issue | 11 |
container_start_page | 6543 |
container_title | Nucleic acids research |
container_volume | 52 |
creator | Gao, Jun Proffitt, David R Marecki, John C Protacio, Reine U Wahls, Wayne P Byrd, Alicia K Raney, Kevin D |
description | Pif1 helicase functions in both the nucleus and mitochondria. Pif1 tightly couples ATP hydrolysis, single-stranded DNA translocation, and duplex DNA unwinding. We investigated two Pif1 variants (F723A and T464A) that have each lost one site of interaction of the protein with the DNA substrate. Both variants exhibit minor reductions in affinity for DNA and ATP hydrolysis but have impaired DNA unwinding activity. However, these variants translocate on single-stranded DNA faster than the wildtype enzyme and can slide on the DNA substrate in an ATP-independent manner. This suggests they have lost their grip on the DNA, interfering with coupling ATP hydrolysis to translocation and unwinding. Yeast expressing these variants have increased gross chromosomal rearrangements, increased telomere length, and can overcome the lethality of dna2Δ, similar to phenotypes of yeast lacking Pif1. However, unlike pif1Δ mutants, they are viable on glycerol containing media and maintain similar mitochondrial DNA copy numbers as Pif1 wildtype. Overall, our data indicate that a tight grip of the trailing edge of the Pif1 enzyme on the DNA couples ATP hydrolysis to DNA translocation and DNA unwinding. This tight grip appears to be essential for the Pif1 nuclear functions tested but is dispensable for mitochondrial respiratory growth. |
doi_str_mv | 10.1093/nar/gkae403 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11194084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055895634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d0a7e94cfd7d052c70a77117d5ec1624cd52dfcaf3d8fd5bf88d22e4db8708eb3</originalsourceid><addsrcrecordid>eNpVkU1P3DAQhi1UVLa0J-7Ix0ooxZ8b54QQ0BYJtT3Qs-XY440ha29tp4g_wW9utmwRPY1G88w7Hy9CR5R8oqTjp9Hk09W9AUH4HlpQvmSN6JbsDVoQTmRDiVAH6F0pd4RQQaV4iw64aiUTii_Q0-1DwhlKcBMUHCKuA-DLb-e4D9GFuMIlVMDJ4x_BUzzAGKwpgE0GDKVArMGM2KeM42RHMBn7KdoaUiy4nyp2oWwgFtOP8Jdah5rskKLL27557iZkU1N-xKucHurwHu17Mxb4sIuH6Ofnq9uLr83N9y_XF-c3jWUtqY0jpoVOWO9aRySz7Zy3lLZOgqVLJqyTzHlrPHfKO9l7pRxjIFyvWqKg54fo7Fl3M_VrcHY-JJtRb3JYm_yokwn6_0oMg16l35pS2gmixKzwcaeQ06_5d1WvQ7EwjiZCmoqeXy9VJ5d8i548ozanUjL4lzmU6K2FerZQ7yyc6ePXq72w_zzjfwDzb52z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055895634</pqid></control><display><type>article</type><title>Two residues in the DNA binding site of Pif1 helicase are essential for nuclear functions but dispensable for mitochondrial respiratory growth</title><source>PubMed Central</source><source>Oxford Open Access Journals</source><creator>Gao, Jun ; Proffitt, David R ; Marecki, John C ; Protacio, Reine U ; Wahls, Wayne P ; Byrd, Alicia K ; Raney, Kevin D</creator><creatorcontrib>Gao, Jun ; Proffitt, David R ; Marecki, John C ; Protacio, Reine U ; Wahls, Wayne P ; Byrd, Alicia K ; Raney, Kevin D</creatorcontrib><description>Pif1 helicase functions in both the nucleus and mitochondria. Pif1 tightly couples ATP hydrolysis, single-stranded DNA translocation, and duplex DNA unwinding. We investigated two Pif1 variants (F723A and T464A) that have each lost one site of interaction of the protein with the DNA substrate. Both variants exhibit minor reductions in affinity for DNA and ATP hydrolysis but have impaired DNA unwinding activity. However, these variants translocate on single-stranded DNA faster than the wildtype enzyme and can slide on the DNA substrate in an ATP-independent manner. This suggests they have lost their grip on the DNA, interfering with coupling ATP hydrolysis to translocation and unwinding. Yeast expressing these variants have increased gross chromosomal rearrangements, increased telomere length, and can overcome the lethality of dna2Δ, similar to phenotypes of yeast lacking Pif1. However, unlike pif1Δ mutants, they are viable on glycerol containing media and maintain similar mitochondrial DNA copy numbers as Pif1 wildtype. Overall, our data indicate that a tight grip of the trailing edge of the Pif1 enzyme on the DNA couples ATP hydrolysis to DNA translocation and DNA unwinding. This tight grip appears to be essential for the Pif1 nuclear functions tested but is dispensable for mitochondrial respiratory growth.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkae403</identifier><identifier>PMID: 38752483</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine Triphosphate - metabolism ; Binding Sites ; Cell Nucleus - metabolism ; DNA Helicases - genetics ; DNA Helicases - metabolism ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; DNA, Single-Stranded - genetics ; DNA, Single-Stranded - metabolism ; Hydrolysis ; Mitochondria - enzymology ; Mitochondria - genetics ; Mitochondria - metabolism ; Mutation ; Nucleic Acid Enzymes ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Nucleic acids research, 2024-06, Vol.52 (11), p.6543-6557</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d0a7e94cfd7d052c70a77117d5ec1624cd52dfcaf3d8fd5bf88d22e4db8708eb3</cites><orcidid>0000-0002-1338-1610 ; 0000-0001-7146-5786 ; 0000-0002-7290-0206 ; 0000-0001-5484-0759 ; 0000-0003-4091-8724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194084/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194084/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38752483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Proffitt, David R</creatorcontrib><creatorcontrib>Marecki, John C</creatorcontrib><creatorcontrib>Protacio, Reine U</creatorcontrib><creatorcontrib>Wahls, Wayne P</creatorcontrib><creatorcontrib>Byrd, Alicia K</creatorcontrib><creatorcontrib>Raney, Kevin D</creatorcontrib><title>Two residues in the DNA binding site of Pif1 helicase are essential for nuclear functions but dispensable for mitochondrial respiratory growth</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Pif1 helicase functions in both the nucleus and mitochondria. Pif1 tightly couples ATP hydrolysis, single-stranded DNA translocation, and duplex DNA unwinding. We investigated two Pif1 variants (F723A and T464A) that have each lost one site of interaction of the protein with the DNA substrate. Both variants exhibit minor reductions in affinity for DNA and ATP hydrolysis but have impaired DNA unwinding activity. However, these variants translocate on single-stranded DNA faster than the wildtype enzyme and can slide on the DNA substrate in an ATP-independent manner. This suggests they have lost their grip on the DNA, interfering with coupling ATP hydrolysis to translocation and unwinding. Yeast expressing these variants have increased gross chromosomal rearrangements, increased telomere length, and can overcome the lethality of dna2Δ, similar to phenotypes of yeast lacking Pif1. However, unlike pif1Δ mutants, they are viable on glycerol containing media and maintain similar mitochondrial DNA copy numbers as Pif1 wildtype. Overall, our data indicate that a tight grip of the trailing edge of the Pif1 enzyme on the DNA couples ATP hydrolysis to DNA translocation and DNA unwinding. This tight grip appears to be essential for the Pif1 nuclear functions tested but is dispensable for mitochondrial respiratory growth.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Binding Sites</subject><subject>Cell Nucleus - metabolism</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>DNA, Single-Stranded - genetics</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>Hydrolysis</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mutation</subject><subject>Nucleic Acid Enzymes</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkU1P3DAQhi1UVLa0J-7Ix0ooxZ8b54QQ0BYJtT3Qs-XY440ha29tp4g_wW9utmwRPY1G88w7Hy9CR5R8oqTjp9Hk09W9AUH4HlpQvmSN6JbsDVoQTmRDiVAH6F0pd4RQQaV4iw64aiUTii_Q0-1DwhlKcBMUHCKuA-DLb-e4D9GFuMIlVMDJ4x_BUzzAGKwpgE0GDKVArMGM2KeM42RHMBn7KdoaUiy4nyp2oWwgFtOP8Jdah5rskKLL27557iZkU1N-xKucHurwHu17Mxb4sIuH6Ofnq9uLr83N9y_XF-c3jWUtqY0jpoVOWO9aRySz7Zy3lLZOgqVLJqyTzHlrPHfKO9l7pRxjIFyvWqKg54fo7Fl3M_VrcHY-JJtRb3JYm_yokwn6_0oMg16l35pS2gmixKzwcaeQ06_5d1WvQ7EwjiZCmoqeXy9VJ5d8i548ozanUjL4lzmU6K2FerZQ7yyc6ePXq72w_zzjfwDzb52z</recordid><startdate>20240624</startdate><enddate>20240624</enddate><creator>Gao, Jun</creator><creator>Proffitt, David R</creator><creator>Marecki, John C</creator><creator>Protacio, Reine U</creator><creator>Wahls, Wayne P</creator><creator>Byrd, Alicia K</creator><creator>Raney, Kevin D</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1338-1610</orcidid><orcidid>https://orcid.org/0000-0001-7146-5786</orcidid><orcidid>https://orcid.org/0000-0002-7290-0206</orcidid><orcidid>https://orcid.org/0000-0001-5484-0759</orcidid><orcidid>https://orcid.org/0000-0003-4091-8724</orcidid></search><sort><creationdate>20240624</creationdate><title>Two residues in the DNA binding site of Pif1 helicase are essential for nuclear functions but dispensable for mitochondrial respiratory growth</title><author>Gao, Jun ; Proffitt, David R ; Marecki, John C ; Protacio, Reine U ; Wahls, Wayne P ; Byrd, Alicia K ; Raney, Kevin D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d0a7e94cfd7d052c70a77117d5ec1624cd52dfcaf3d8fd5bf88d22e4db8708eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Binding Sites</topic><topic>Cell Nucleus - metabolism</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>DNA, Single-Stranded - genetics</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>Hydrolysis</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mutation</topic><topic>Nucleic Acid Enzymes</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Proffitt, David R</creatorcontrib><creatorcontrib>Marecki, John C</creatorcontrib><creatorcontrib>Protacio, Reine U</creatorcontrib><creatorcontrib>Wahls, Wayne P</creatorcontrib><creatorcontrib>Byrd, Alicia K</creatorcontrib><creatorcontrib>Raney, Kevin D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jun</au><au>Proffitt, David R</au><au>Marecki, John C</au><au>Protacio, Reine U</au><au>Wahls, Wayne P</au><au>Byrd, Alicia K</au><au>Raney, Kevin D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two residues in the DNA binding site of Pif1 helicase are essential for nuclear functions but dispensable for mitochondrial respiratory growth</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2024-06-24</date><risdate>2024</risdate><volume>52</volume><issue>11</issue><spage>6543</spage><epage>6557</epage><pages>6543-6557</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Pif1 helicase functions in both the nucleus and mitochondria. Pif1 tightly couples ATP hydrolysis, single-stranded DNA translocation, and duplex DNA unwinding. We investigated two Pif1 variants (F723A and T464A) that have each lost one site of interaction of the protein with the DNA substrate. Both variants exhibit minor reductions in affinity for DNA and ATP hydrolysis but have impaired DNA unwinding activity. However, these variants translocate on single-stranded DNA faster than the wildtype enzyme and can slide on the DNA substrate in an ATP-independent manner. This suggests they have lost their grip on the DNA, interfering with coupling ATP hydrolysis to translocation and unwinding. Yeast expressing these variants have increased gross chromosomal rearrangements, increased telomere length, and can overcome the lethality of dna2Δ, similar to phenotypes of yeast lacking Pif1. However, unlike pif1Δ mutants, they are viable on glycerol containing media and maintain similar mitochondrial DNA copy numbers as Pif1 wildtype. Overall, our data indicate that a tight grip of the trailing edge of the Pif1 enzyme on the DNA couples ATP hydrolysis to DNA translocation and DNA unwinding. This tight grip appears to be essential for the Pif1 nuclear functions tested but is dispensable for mitochondrial respiratory growth.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38752483</pmid><doi>10.1093/nar/gkae403</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1338-1610</orcidid><orcidid>https://orcid.org/0000-0001-7146-5786</orcidid><orcidid>https://orcid.org/0000-0002-7290-0206</orcidid><orcidid>https://orcid.org/0000-0001-5484-0759</orcidid><orcidid>https://orcid.org/0000-0003-4091-8724</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2024-06, Vol.52 (11), p.6543-6557 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11194084 |
source | PubMed Central; Oxford Open Access Journals |
subjects | Adenosine Triphosphate - metabolism Binding Sites Cell Nucleus - metabolism DNA Helicases - genetics DNA Helicases - metabolism DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism DNA, Single-Stranded - genetics DNA, Single-Stranded - metabolism Hydrolysis Mitochondria - enzymology Mitochondria - genetics Mitochondria - metabolism Mutation Nucleic Acid Enzymes Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism |
title | Two residues in the DNA binding site of Pif1 helicase are essential for nuclear functions but dispensable for mitochondrial respiratory growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20residues%20in%20the%20DNA%20binding%20site%20of%20Pif1%20helicase%20are%20essential%20for%20nuclear%20functions%20but%20dispensable%20for%20mitochondrial%20respiratory%20growth&rft.jtitle=Nucleic%20acids%20research&rft.au=Gao,%20Jun&rft.date=2024-06-24&rft.volume=52&rft.issue=11&rft.spage=6543&rft.epage=6557&rft.pages=6543-6557&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkae403&rft_dat=%3Cproquest_pubme%3E3055895634%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-d0a7e94cfd7d052c70a77117d5ec1624cd52dfcaf3d8fd5bf88d22e4db8708eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055895634&rft_id=info:pmid/38752483&rfr_iscdi=true |