Loading…

TEM-compatible microdevice for the complete thermoelectric characterization of epitaxially integrated Si-based nanowires

Nanostructured materials present improved thermoelectric properties due to non-trivial effects at the nanoscale. However, the characterization of individual nanostructures, especially from the thermal point of view, is still an unsolved topic. This work presents the complete structural, morphologica...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale horizons 2024-06, Vol.9 (7), p.12-121
Main Authors: Sojo-Gordillo, Jose M, Kaur, Yashpreet, Tachikawa, Saeko, Alayo, Nerea, Salleras, Marc, Forrer, Nicolas, Fonseca, Luis, Morata, Alex, Tarancón, Albert, Zardo, Ilaria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanostructured materials present improved thermoelectric properties due to non-trivial effects at the nanoscale. However, the characterization of individual nanostructures, especially from the thermal point of view, is still an unsolved topic. This work presents the complete structural, morphological, and thermoelectrical evaluation of the selfsame individual bottom-up integrated nanowire employing an innovative micro-machined device compatible with transmission electron microscopy whose fabrication is also discussed. Thanks to a design that arranges the nanostructured samples completely suspended, detailed structural analysis using transmission electron microscopy is enabled. In the same device architecture, electrical collectors and isolated heaters are available at both ends of the trenches for thermoelectrical measurements of the nanowire i.e. thermal and electrical properties simultaneously. This allows the direct measurement of the nanowire power factor. Furthermore, micro-Raman thermometry measurements were performed to evaluate the thermal conductivity of the same suspended silicon nanowire. A thermal profile of the self-heating nanowire could be spatially resolved and used to compute the thermal conductivity. In this work, heavily-doped silicon nanowires were grown on this microdevices yielding a thermal conductivity of 30.8 ± 1.7 W Km −1 and a power factor of 2.8 mW mK −2 at an average nanowire temperature of 400 K. Notably, no thermal contact resistance was observed between the nanowire and the bulk, confirming the epitaxial attachment. The device presented here shows remarkable utility in the challenging thermoelectrical characterization of integrated nanostructures and in the development of multiple devices such as thermoelectric generators. A MEMS device for the evaluation of suspended integrated single nanowires is presented, allowing transmission and electrothermal experiments for structural and thermoelectric characterization. μ-Raman thermometry confirms nanowires' epitaxy.
ISSN:2055-6756
2055-6764
2055-6764
DOI:10.1039/d4nh00114a