Loading…
Heart rate variability (HRV) changes and cortical volume changes in a randomized trial of five weeks of daily HRV biofeedback in younger and older adults
Previous studies indicate that the structure and function of medial prefrontal cortex (PFC) and lateral orbitofrontal cortex (OFC) are associated with heart rate variability (HRV). Typically, this association is assumed to reflect the PFC's role in controlling HRV and emotion regulation, with b...
Saved in:
Published in: | International journal of psychophysiology 2022-11, Vol.181, p.50-63 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Previous studies indicate that the structure and function of medial prefrontal cortex (PFC) and lateral orbitofrontal cortex (OFC) are associated with heart rate variability (HRV). Typically, this association is assumed to reflect the PFC's role in controlling HRV and emotion regulation, with better prefrontal structural integrity supporting greater HRV and better emotion regulation. However, as a control system, the PFC must monitor and respond to heart rate oscillatory activity. Thus, engaging in regulatory feedback during heart rate oscillatory activity may over time help shape PFC structure, as relevant circuits and connections are modified. In the current study with younger and older adults, we tested whether 5Â weeks of daily sessions of biofeedback to increase heart rate oscillations (Osc+ condition) vs. to decrease heart rate oscillations (Osc- condition) affected cortical volume in left OFC and right OFC, two regions particularly associated with HRV in prior studies. The left OFC showed significant differences in volume change across conditions, with Osc+ increasing volume relative to Osc-. The volume changes in left OFC were significantly correlated with changes in mood disturbance. In addition, resting low frequency HRV increased more in the Osc+ than in the Osc- condition. These findings indicate that daily biofeedback sessions regulating heart rate oscillatory activity can shape both resting HRV and the brain circuits that help control HRV and regulate emotion. |
---|---|
ISSN: | 0167-8760 1872-7697 1872-7697 |
DOI: | 10.1016/j.ijpsycho.2022.08.006 |