Loading…

Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes

Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyze...

Full description

Saved in:
Bibliographic Details
Published in:Cytotechnology (Dordrecht) 2024-08, Vol.76 (4), p.483-502
Main Authors: Vuorenpää, Hanna, Valtonen, Joona, Penttinen, Kirsi, Koskimäki, Sanna, Hovinen, Emma, Ahola, Antti, Gering, Christine, Parraga, Jenny, Kelloniemi, Minna, Hyttinen, Jari, Kellomäki, Minna, Aalto-Setälä, Katriina, Miettinen, Susanna, Pekkanen-Mattila, Mari
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23
cites cdi_FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23
container_end_page 502
container_issue 4
container_start_page 483
container_title Cytotechnology (Dordrecht)
container_volume 76
creator Vuorenpää, Hanna
Valtonen, Joona
Penttinen, Kirsi
Koskimäki, Sanna
Hovinen, Emma
Ahola, Antti
Gering, Christine
Parraga, Jenny
Kelloniemi, Minna
Hyttinen, Jari
Kellomäki, Minna
Aalto-Setälä, Katriina
Miettinen, Susanna
Pekkanen-Mattila, Mari
description Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases.
doi_str_mv 10.1007/s10616-024-00630-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11196475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071630713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1ERbctX4ADssSFi2HGTmznhFBFC1IlLu3ZchxnSXHixU5A--3xbkr5c-AyPsxv3rzxI-QFwhsEUG8zgkTJgFcMQApg9ROywVoJBkrpp2QDDQfWgGxOyVnO9wDQKBTPyKnQjRBa8Q0J1z4EO9HtMrKtD3YeJtra7DvqbOoG6-gYOx8yzctuF9NM-5jGQsWJxp66MrwEm-jk5x8xfc3UTh3tl8kdCBtWkTjuo9vPPl-Qk96G7J8_vOfk7urD7eVHdvP5-tPl-xvmKlXPrHWAyjpwsmsRVVOhaDveceehF3UlW9AWdV1rJ3VtXd-I1gktODoOlvdcnJN3q-5uaUffOT_NyQazS8No095EO5i_O9PwxWzjd4OIjSweisLrB4UUvy0-z2Ycsjt-lY9LNgIU11hpDgV99Q96H5dUjj9SKA9FFIqvlEsx5-T7RzcI5pCmWdM0JU1zTNMcXLz8847HkV_xFUCsQC6taevT793_kf0JxZCs9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071630713</pqid></control><display><type>article</type><title>Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes</title><source>Springer Link</source><creator>Vuorenpää, Hanna ; Valtonen, Joona ; Penttinen, Kirsi ; Koskimäki, Sanna ; Hovinen, Emma ; Ahola, Antti ; Gering, Christine ; Parraga, Jenny ; Kelloniemi, Minna ; Hyttinen, Jari ; Kellomäki, Minna ; Aalto-Setälä, Katriina ; Miettinen, Susanna ; Pekkanen-Mattila, Mari</creator><creatorcontrib>Vuorenpää, Hanna ; Valtonen, Joona ; Penttinen, Kirsi ; Koskimäki, Sanna ; Hovinen, Emma ; Ahola, Antti ; Gering, Christine ; Parraga, Jenny ; Kelloniemi, Minna ; Hyttinen, Jari ; Kellomäki, Minna ; Aalto-Setälä, Katriina ; Miettinen, Susanna ; Pekkanen-Mattila, Mari</creatorcontrib><description>Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases.</description><identifier>ISSN: 0920-9069</identifier><identifier>EISSN: 1573-0778</identifier><identifier>DOI: 10.1007/s10616-024-00630-5</identifier><identifier>PMID: 38933872</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Actin ; Adipose tissue ; Biochemistry ; Biomaterials ; Biomedicine ; Biotechnology ; Body fat ; Cardiomyocytes ; Cardiovascular diseases ; Cell culture ; Chemistry ; Chemistry and Materials Science ; Endothelial cells ; Ethics ; Fibroblasts ; Gelatin ; Gellan gum ; Heart ; Hospitals ; Hydrogels ; Insulin ; Morphology ; Penicillin ; Regenerative medicine ; Smooth muscle ; Stem cells ; Stromal cells ; Test systems ; Tissue engineering</subject><ispartof>Cytotechnology (Dordrecht), 2024-08, Vol.76 (4), p.483-502</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024.</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23</citedby><cites>FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23</cites><orcidid>0000-0002-6351-3044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38933872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vuorenpää, Hanna</creatorcontrib><creatorcontrib>Valtonen, Joona</creatorcontrib><creatorcontrib>Penttinen, Kirsi</creatorcontrib><creatorcontrib>Koskimäki, Sanna</creatorcontrib><creatorcontrib>Hovinen, Emma</creatorcontrib><creatorcontrib>Ahola, Antti</creatorcontrib><creatorcontrib>Gering, Christine</creatorcontrib><creatorcontrib>Parraga, Jenny</creatorcontrib><creatorcontrib>Kelloniemi, Minna</creatorcontrib><creatorcontrib>Hyttinen, Jari</creatorcontrib><creatorcontrib>Kellomäki, Minna</creatorcontrib><creatorcontrib>Aalto-Setälä, Katriina</creatorcontrib><creatorcontrib>Miettinen, Susanna</creatorcontrib><creatorcontrib>Pekkanen-Mattila, Mari</creatorcontrib><title>Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes</title><title>Cytotechnology (Dordrecht)</title><addtitle>Cytotechnology</addtitle><addtitle>Cytotechnology</addtitle><description>Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases.</description><subject>Actin</subject><subject>Adipose tissue</subject><subject>Biochemistry</subject><subject>Biomaterials</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Body fat</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular diseases</subject><subject>Cell culture</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Endothelial cells</subject><subject>Ethics</subject><subject>Fibroblasts</subject><subject>Gelatin</subject><subject>Gellan gum</subject><subject>Heart</subject><subject>Hospitals</subject><subject>Hydrogels</subject><subject>Insulin</subject><subject>Morphology</subject><subject>Penicillin</subject><subject>Regenerative medicine</subject><subject>Smooth muscle</subject><subject>Stem cells</subject><subject>Stromal cells</subject><subject>Test systems</subject><subject>Tissue engineering</subject><issn>0920-9069</issn><issn>1573-0778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS1ERbctX4ADssSFi2HGTmznhFBFC1IlLu3ZchxnSXHixU5A--3xbkr5c-AyPsxv3rzxI-QFwhsEUG8zgkTJgFcMQApg9ROywVoJBkrpp2QDDQfWgGxOyVnO9wDQKBTPyKnQjRBa8Q0J1z4EO9HtMrKtD3YeJtra7DvqbOoG6-gYOx8yzctuF9NM-5jGQsWJxp66MrwEm-jk5x8xfc3UTh3tl8kdCBtWkTjuo9vPPl-Qk96G7J8_vOfk7urD7eVHdvP5-tPl-xvmKlXPrHWAyjpwsmsRVVOhaDveceehF3UlW9AWdV1rJ3VtXd-I1gktODoOlvdcnJN3q-5uaUffOT_NyQazS8No095EO5i_O9PwxWzjd4OIjSweisLrB4UUvy0-z2Ycsjt-lY9LNgIU11hpDgV99Q96H5dUjj9SKA9FFIqvlEsx5-T7RzcI5pCmWdM0JU1zTNMcXLz8847HkV_xFUCsQC6taevT793_kf0JxZCs9g</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Vuorenpää, Hanna</creator><creator>Valtonen, Joona</creator><creator>Penttinen, Kirsi</creator><creator>Koskimäki, Sanna</creator><creator>Hovinen, Emma</creator><creator>Ahola, Antti</creator><creator>Gering, Christine</creator><creator>Parraga, Jenny</creator><creator>Kelloniemi, Minna</creator><creator>Hyttinen, Jari</creator><creator>Kellomäki, Minna</creator><creator>Aalto-Setälä, Katriina</creator><creator>Miettinen, Susanna</creator><creator>Pekkanen-Mattila, Mari</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6351-3044</orcidid></search><sort><creationdate>20240801</creationdate><title>Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes</title><author>Vuorenpää, Hanna ; Valtonen, Joona ; Penttinen, Kirsi ; Koskimäki, Sanna ; Hovinen, Emma ; Ahola, Antti ; Gering, Christine ; Parraga, Jenny ; Kelloniemi, Minna ; Hyttinen, Jari ; Kellomäki, Minna ; Aalto-Setälä, Katriina ; Miettinen, Susanna ; Pekkanen-Mattila, Mari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actin</topic><topic>Adipose tissue</topic><topic>Biochemistry</topic><topic>Biomaterials</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Body fat</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular diseases</topic><topic>Cell culture</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Endothelial cells</topic><topic>Ethics</topic><topic>Fibroblasts</topic><topic>Gelatin</topic><topic>Gellan gum</topic><topic>Heart</topic><topic>Hospitals</topic><topic>Hydrogels</topic><topic>Insulin</topic><topic>Morphology</topic><topic>Penicillin</topic><topic>Regenerative medicine</topic><topic>Smooth muscle</topic><topic>Stem cells</topic><topic>Stromal cells</topic><topic>Test systems</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vuorenpää, Hanna</creatorcontrib><creatorcontrib>Valtonen, Joona</creatorcontrib><creatorcontrib>Penttinen, Kirsi</creatorcontrib><creatorcontrib>Koskimäki, Sanna</creatorcontrib><creatorcontrib>Hovinen, Emma</creatorcontrib><creatorcontrib>Ahola, Antti</creatorcontrib><creatorcontrib>Gering, Christine</creatorcontrib><creatorcontrib>Parraga, Jenny</creatorcontrib><creatorcontrib>Kelloniemi, Minna</creatorcontrib><creatorcontrib>Hyttinen, Jari</creatorcontrib><creatorcontrib>Kellomäki, Minna</creatorcontrib><creatorcontrib>Aalto-Setälä, Katriina</creatorcontrib><creatorcontrib>Miettinen, Susanna</creatorcontrib><creatorcontrib>Pekkanen-Mattila, Mari</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cytotechnology (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vuorenpää, Hanna</au><au>Valtonen, Joona</au><au>Penttinen, Kirsi</au><au>Koskimäki, Sanna</au><au>Hovinen, Emma</au><au>Ahola, Antti</au><au>Gering, Christine</au><au>Parraga, Jenny</au><au>Kelloniemi, Minna</au><au>Hyttinen, Jari</au><au>Kellomäki, Minna</au><au>Aalto-Setälä, Katriina</au><au>Miettinen, Susanna</au><au>Pekkanen-Mattila, Mari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes</atitle><jtitle>Cytotechnology (Dordrecht)</jtitle><stitle>Cytotechnology</stitle><addtitle>Cytotechnology</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>76</volume><issue>4</issue><spage>483</spage><epage>502</epage><pages>483-502</pages><issn>0920-9069</issn><eissn>1573-0778</eissn><abstract>Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>38933872</pmid><doi>10.1007/s10616-024-00630-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6351-3044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-9069
ispartof Cytotechnology (Dordrecht), 2024-08, Vol.76 (4), p.483-502
issn 0920-9069
1573-0778
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11196475
source Springer Link
subjects Actin
Adipose tissue
Biochemistry
Biomaterials
Biomedicine
Biotechnology
Body fat
Cardiomyocytes
Cardiovascular diseases
Cell culture
Chemistry
Chemistry and Materials Science
Endothelial cells
Ethics
Fibroblasts
Gelatin
Gellan gum
Heart
Hospitals
Hydrogels
Insulin
Morphology
Penicillin
Regenerative medicine
Smooth muscle
Stem cells
Stromal cells
Test systems
Tissue engineering
title Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gellan%20gum-gelatin%20based%20cardiac%20models%20support%20formation%20of%20cellular%20networks%20and%20functional%20cardiomyocytes&rft.jtitle=Cytotechnology%20(Dordrecht)&rft.au=Vuorenp%C3%A4%C3%A4,%20Hanna&rft.date=2024-08-01&rft.volume=76&rft.issue=4&rft.spage=483&rft.epage=502&rft.pages=483-502&rft.issn=0920-9069&rft.eissn=1573-0778&rft_id=info:doi/10.1007/s10616-024-00630-5&rft_dat=%3Cproquest_pubme%3E3071630713%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3071630713&rft_id=info:pmid/38933872&rfr_iscdi=true