Loading…
Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes
Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyze...
Saved in:
Published in: | Cytotechnology (Dordrecht) 2024-08, Vol.76 (4), p.483-502 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23 |
container_end_page | 502 |
container_issue | 4 |
container_start_page | 483 |
container_title | Cytotechnology (Dordrecht) |
container_volume | 76 |
creator | Vuorenpää, Hanna Valtonen, Joona Penttinen, Kirsi Koskimäki, Sanna Hovinen, Emma Ahola, Antti Gering, Christine Parraga, Jenny Kelloniemi, Minna Hyttinen, Jari Kellomäki, Minna Aalto-Setälä, Katriina Miettinen, Susanna Pekkanen-Mattila, Mari |
description | Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases. |
doi_str_mv | 10.1007/s10616-024-00630-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11196475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071630713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1ERbctX4ADssSFi2HGTmznhFBFC1IlLu3ZchxnSXHixU5A--3xbkr5c-AyPsxv3rzxI-QFwhsEUG8zgkTJgFcMQApg9ROywVoJBkrpp2QDDQfWgGxOyVnO9wDQKBTPyKnQjRBa8Q0J1z4EO9HtMrKtD3YeJtra7DvqbOoG6-gYOx8yzctuF9NM-5jGQsWJxp66MrwEm-jk5x8xfc3UTh3tl8kdCBtWkTjuo9vPPl-Qk96G7J8_vOfk7urD7eVHdvP5-tPl-xvmKlXPrHWAyjpwsmsRVVOhaDveceehF3UlW9AWdV1rJ3VtXd-I1gktODoOlvdcnJN3q-5uaUffOT_NyQazS8No095EO5i_O9PwxWzjd4OIjSweisLrB4UUvy0-z2Ycsjt-lY9LNgIU11hpDgV99Q96H5dUjj9SKA9FFIqvlEsx5-T7RzcI5pCmWdM0JU1zTNMcXLz8847HkV_xFUCsQC6taevT793_kf0JxZCs9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071630713</pqid></control><display><type>article</type><title>Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes</title><source>Springer Link</source><creator>Vuorenpää, Hanna ; Valtonen, Joona ; Penttinen, Kirsi ; Koskimäki, Sanna ; Hovinen, Emma ; Ahola, Antti ; Gering, Christine ; Parraga, Jenny ; Kelloniemi, Minna ; Hyttinen, Jari ; Kellomäki, Minna ; Aalto-Setälä, Katriina ; Miettinen, Susanna ; Pekkanen-Mattila, Mari</creator><creatorcontrib>Vuorenpää, Hanna ; Valtonen, Joona ; Penttinen, Kirsi ; Koskimäki, Sanna ; Hovinen, Emma ; Ahola, Antti ; Gering, Christine ; Parraga, Jenny ; Kelloniemi, Minna ; Hyttinen, Jari ; Kellomäki, Minna ; Aalto-Setälä, Katriina ; Miettinen, Susanna ; Pekkanen-Mattila, Mari</creatorcontrib><description>Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases.</description><identifier>ISSN: 0920-9069</identifier><identifier>EISSN: 1573-0778</identifier><identifier>DOI: 10.1007/s10616-024-00630-5</identifier><identifier>PMID: 38933872</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Actin ; Adipose tissue ; Biochemistry ; Biomaterials ; Biomedicine ; Biotechnology ; Body fat ; Cardiomyocytes ; Cardiovascular diseases ; Cell culture ; Chemistry ; Chemistry and Materials Science ; Endothelial cells ; Ethics ; Fibroblasts ; Gelatin ; Gellan gum ; Heart ; Hospitals ; Hydrogels ; Insulin ; Morphology ; Penicillin ; Regenerative medicine ; Smooth muscle ; Stem cells ; Stromal cells ; Test systems ; Tissue engineering</subject><ispartof>Cytotechnology (Dordrecht), 2024-08, Vol.76 (4), p.483-502</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024.</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23</citedby><cites>FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23</cites><orcidid>0000-0002-6351-3044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38933872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vuorenpää, Hanna</creatorcontrib><creatorcontrib>Valtonen, Joona</creatorcontrib><creatorcontrib>Penttinen, Kirsi</creatorcontrib><creatorcontrib>Koskimäki, Sanna</creatorcontrib><creatorcontrib>Hovinen, Emma</creatorcontrib><creatorcontrib>Ahola, Antti</creatorcontrib><creatorcontrib>Gering, Christine</creatorcontrib><creatorcontrib>Parraga, Jenny</creatorcontrib><creatorcontrib>Kelloniemi, Minna</creatorcontrib><creatorcontrib>Hyttinen, Jari</creatorcontrib><creatorcontrib>Kellomäki, Minna</creatorcontrib><creatorcontrib>Aalto-Setälä, Katriina</creatorcontrib><creatorcontrib>Miettinen, Susanna</creatorcontrib><creatorcontrib>Pekkanen-Mattila, Mari</creatorcontrib><title>Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes</title><title>Cytotechnology (Dordrecht)</title><addtitle>Cytotechnology</addtitle><addtitle>Cytotechnology</addtitle><description>Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases.</description><subject>Actin</subject><subject>Adipose tissue</subject><subject>Biochemistry</subject><subject>Biomaterials</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Body fat</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular diseases</subject><subject>Cell culture</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Endothelial cells</subject><subject>Ethics</subject><subject>Fibroblasts</subject><subject>Gelatin</subject><subject>Gellan gum</subject><subject>Heart</subject><subject>Hospitals</subject><subject>Hydrogels</subject><subject>Insulin</subject><subject>Morphology</subject><subject>Penicillin</subject><subject>Regenerative medicine</subject><subject>Smooth muscle</subject><subject>Stem cells</subject><subject>Stromal cells</subject><subject>Test systems</subject><subject>Tissue engineering</subject><issn>0920-9069</issn><issn>1573-0778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS1ERbctX4ADssSFi2HGTmznhFBFC1IlLu3ZchxnSXHixU5A--3xbkr5c-AyPsxv3rzxI-QFwhsEUG8zgkTJgFcMQApg9ROywVoJBkrpp2QDDQfWgGxOyVnO9wDQKBTPyKnQjRBa8Q0J1z4EO9HtMrKtD3YeJtra7DvqbOoG6-gYOx8yzctuF9NM-5jGQsWJxp66MrwEm-jk5x8xfc3UTh3tl8kdCBtWkTjuo9vPPl-Qk96G7J8_vOfk7urD7eVHdvP5-tPl-xvmKlXPrHWAyjpwsmsRVVOhaDveceehF3UlW9AWdV1rJ3VtXd-I1gktODoOlvdcnJN3q-5uaUffOT_NyQazS8No095EO5i_O9PwxWzjd4OIjSweisLrB4UUvy0-z2Ycsjt-lY9LNgIU11hpDgV99Q96H5dUjj9SKA9FFIqvlEsx5-T7RzcI5pCmWdM0JU1zTNMcXLz8847HkV_xFUCsQC6taevT793_kf0JxZCs9g</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Vuorenpää, Hanna</creator><creator>Valtonen, Joona</creator><creator>Penttinen, Kirsi</creator><creator>Koskimäki, Sanna</creator><creator>Hovinen, Emma</creator><creator>Ahola, Antti</creator><creator>Gering, Christine</creator><creator>Parraga, Jenny</creator><creator>Kelloniemi, Minna</creator><creator>Hyttinen, Jari</creator><creator>Kellomäki, Minna</creator><creator>Aalto-Setälä, Katriina</creator><creator>Miettinen, Susanna</creator><creator>Pekkanen-Mattila, Mari</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6351-3044</orcidid></search><sort><creationdate>20240801</creationdate><title>Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes</title><author>Vuorenpää, Hanna ; Valtonen, Joona ; Penttinen, Kirsi ; Koskimäki, Sanna ; Hovinen, Emma ; Ahola, Antti ; Gering, Christine ; Parraga, Jenny ; Kelloniemi, Minna ; Hyttinen, Jari ; Kellomäki, Minna ; Aalto-Setälä, Katriina ; Miettinen, Susanna ; Pekkanen-Mattila, Mari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actin</topic><topic>Adipose tissue</topic><topic>Biochemistry</topic><topic>Biomaterials</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Body fat</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular diseases</topic><topic>Cell culture</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Endothelial cells</topic><topic>Ethics</topic><topic>Fibroblasts</topic><topic>Gelatin</topic><topic>Gellan gum</topic><topic>Heart</topic><topic>Hospitals</topic><topic>Hydrogels</topic><topic>Insulin</topic><topic>Morphology</topic><topic>Penicillin</topic><topic>Regenerative medicine</topic><topic>Smooth muscle</topic><topic>Stem cells</topic><topic>Stromal cells</topic><topic>Test systems</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vuorenpää, Hanna</creatorcontrib><creatorcontrib>Valtonen, Joona</creatorcontrib><creatorcontrib>Penttinen, Kirsi</creatorcontrib><creatorcontrib>Koskimäki, Sanna</creatorcontrib><creatorcontrib>Hovinen, Emma</creatorcontrib><creatorcontrib>Ahola, Antti</creatorcontrib><creatorcontrib>Gering, Christine</creatorcontrib><creatorcontrib>Parraga, Jenny</creatorcontrib><creatorcontrib>Kelloniemi, Minna</creatorcontrib><creatorcontrib>Hyttinen, Jari</creatorcontrib><creatorcontrib>Kellomäki, Minna</creatorcontrib><creatorcontrib>Aalto-Setälä, Katriina</creatorcontrib><creatorcontrib>Miettinen, Susanna</creatorcontrib><creatorcontrib>Pekkanen-Mattila, Mari</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cytotechnology (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vuorenpää, Hanna</au><au>Valtonen, Joona</au><au>Penttinen, Kirsi</au><au>Koskimäki, Sanna</au><au>Hovinen, Emma</au><au>Ahola, Antti</au><au>Gering, Christine</au><au>Parraga, Jenny</au><au>Kelloniemi, Minna</au><au>Hyttinen, Jari</au><au>Kellomäki, Minna</au><au>Aalto-Setälä, Katriina</au><au>Miettinen, Susanna</au><au>Pekkanen-Mattila, Mari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes</atitle><jtitle>Cytotechnology (Dordrecht)</jtitle><stitle>Cytotechnology</stitle><addtitle>Cytotechnology</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>76</volume><issue>4</issue><spage>483</spage><epage>502</epage><pages>483-502</pages><issn>0920-9069</issn><eissn>1573-0778</eissn><abstract>Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>38933872</pmid><doi>10.1007/s10616-024-00630-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6351-3044</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-9069 |
ispartof | Cytotechnology (Dordrecht), 2024-08, Vol.76 (4), p.483-502 |
issn | 0920-9069 1573-0778 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11196475 |
source | Springer Link |
subjects | Actin Adipose tissue Biochemistry Biomaterials Biomedicine Biotechnology Body fat Cardiomyocytes Cardiovascular diseases Cell culture Chemistry Chemistry and Materials Science Endothelial cells Ethics Fibroblasts Gelatin Gellan gum Heart Hospitals Hydrogels Insulin Morphology Penicillin Regenerative medicine Smooth muscle Stem cells Stromal cells Test systems Tissue engineering |
title | Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gellan%20gum-gelatin%20based%20cardiac%20models%20support%20formation%20of%20cellular%20networks%20and%20functional%20cardiomyocytes&rft.jtitle=Cytotechnology%20(Dordrecht)&rft.au=Vuorenp%C3%A4%C3%A4,%20Hanna&rft.date=2024-08-01&rft.volume=76&rft.issue=4&rft.spage=483&rft.epage=502&rft.pages=483-502&rft.issn=0920-9069&rft.eissn=1573-0778&rft_id=info:doi/10.1007/s10616-024-00630-5&rft_dat=%3Cproquest_pubme%3E3071630713%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-bc017ac0c6db1179413bd2d2ce0f3546b08a18558c685acf93bc38321c20a2f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3071630713&rft_id=info:pmid/38933872&rfr_iscdi=true |