Loading…
Structural insights into the cross-exon to cross-intron spliceosome switch
Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron 1 . Alternatively, it can occur through an exon-defined pathway 2 – 5 , whereby U2 binds the branch site located upstream of the def...
Saved in:
Published in: | Nature (London) 2024-06, Vol.630 (8018), p.1012-1019 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-60a392d6858205263602fa603ba409af0e8a0c3c5ff14bb3f4bd7ec09875c9863 |
container_end_page | 1019 |
container_issue | 8018 |
container_start_page | 1012 |
container_title | Nature (London) |
container_volume | 630 |
creator | Zhang, Zhenwei Kumar, Vinay Dybkov, Olexandr Will, Cindy L. Zhong, Jiayun Ludwig, Sebastian E. J. Urlaub, Henning Kastner, Berthold Stark, Holger Lührmann, Reinhard |
description | Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron
1
. Alternatively, it can occur through an exon-defined pathway
2
–
5
, whereby U2 binds the branch site located upstream of the defined exon and U1 snRNP interacts with the 5′ splice site located directly downstream of it. The U4/U6.U5 tri-snRNP subsequently binds to produce a cross-intron (CI) or cross-exon (CE) pre-B complex, which is then converted to the spliceosomal B complex
6
,
7
. Exon definition promotes the splicing of upstream introns
2
,
8
,
9
and plays a key part in alternative splicing regulation
10
–
16
. However, the three-dimensional structure of exon-defined spliceosomal complexes and the molecular mechanism of the conversion from a CE-organized to a CI-organized spliceosome, a pre-requisite for splicing catalysis, remain poorly understood. Here cryo-electron microscopy analyses of human CE pre-B complex and B-like complexes reveal extensive structural similarities with their CI counterparts. The results indicate that the CE and CI spliceosome assembly pathways converge already at the pre-B stage. Add-back experiments using purified CE pre-B complexes, coupled with cryo-electron microscopy, elucidate the order of the extensive remodelling events that accompany the formation of B complexes and B-like complexes. The molecular triggers and roles of B-specific proteins in these rearrangements are also identified. We show that CE pre-B complexes can productively bind
in trans
to a U1 snRNP-bound 5′ splice site. Together, our studies provide new mechanistic insights into the CE to CI switch during spliceosome assembly and its effect on pre-mRNA splice site pairing at this stage.
Cryo-electron microscopy structures of cross-exon pre-B and B-like complexes contribute new insights into the molecular mechanisms that mediate the switch from a cross-exon to a cross-intron organized spliceosome. |
doi_str_mv | 10.1038/s41586-024-07458-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11208138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059254858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-60a392d6858205263602fa603ba409af0e8a0c3c5ff14bb3f4bd7ec09875c9863</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhi1ERdLAH-BQrdQLF9Pxt_eEEOKjVaQeWs6W1_EmG23Wqb1L6b_HsCG0PXCyx_PM65l5ETolcE6A6S-JE6ElBsoxKC40JgdoSriSmEutDtEUgGoMmskJ-pjSGgAEUfwITZhWShPgU_TtRx8H1w_RtkXTpWa56lO-9KHoV75wMaSE_WPoivwyRjkZc5y2beN8SGHji_S76d3qGH2obZv8ye6cofub659Xd3j-_fbr1eUcO05ljyVYVtKF1EJTEFQyCbS2ElhlOZS2Bq8tOOZEXRNeVazm1UJ5B6VWwpVashm6GHW3Q7XxC-dzQ7Y129hsbPxjgm3Mv5muWZlleDCEUNCE6axwtlOI4dfgU282TXK-bW3nw5AMA1FSwXOHGf38H7oOQ-zyfJlSXOd9MpYpOlIvK4q-3ndDwDx7ZUavTPbKvHhlSC769Pcc-5JXczLARiDlVLf08e3vd2SfAJ6noDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074817433</pqid></control><display><type>article</type><title>Structural insights into the cross-exon to cross-intron spliceosome switch</title><source>Nature Publishing Group</source><creator>Zhang, Zhenwei ; Kumar, Vinay ; Dybkov, Olexandr ; Will, Cindy L. ; Zhong, Jiayun ; Ludwig, Sebastian E. J. ; Urlaub, Henning ; Kastner, Berthold ; Stark, Holger ; Lührmann, Reinhard</creator><creatorcontrib>Zhang, Zhenwei ; Kumar, Vinay ; Dybkov, Olexandr ; Will, Cindy L. ; Zhong, Jiayun ; Ludwig, Sebastian E. J. ; Urlaub, Henning ; Kastner, Berthold ; Stark, Holger ; Lührmann, Reinhard</creatorcontrib><description>Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron
1
. Alternatively, it can occur through an exon-defined pathway
2
–
5
, whereby U2 binds the branch site located upstream of the defined exon and U1 snRNP interacts with the 5′ splice site located directly downstream of it. The U4/U6.U5 tri-snRNP subsequently binds to produce a cross-intron (CI) or cross-exon (CE) pre-B complex, which is then converted to the spliceosomal B complex
6
,
7
. Exon definition promotes the splicing of upstream introns
2
,
8
,
9
and plays a key part in alternative splicing regulation
10
–
16
. However, the three-dimensional structure of exon-defined spliceosomal complexes and the molecular mechanism of the conversion from a CE-organized to a CI-organized spliceosome, a pre-requisite for splicing catalysis, remain poorly understood. Here cryo-electron microscopy analyses of human CE pre-B complex and B-like complexes reveal extensive structural similarities with their CI counterparts. The results indicate that the CE and CI spliceosome assembly pathways converge already at the pre-B stage. Add-back experiments using purified CE pre-B complexes, coupled with cryo-electron microscopy, elucidate the order of the extensive remodelling events that accompany the formation of B complexes and B-like complexes. The molecular triggers and roles of B-specific proteins in these rearrangements are also identified. We show that CE pre-B complexes can productively bind
in trans
to a U1 snRNP-bound 5′ splice site. Together, our studies provide new mechanistic insights into the CE to CI switch during spliceosome assembly and its effect on pre-mRNA splice site pairing at this stage.
Cryo-electron microscopy structures of cross-exon pre-B and B-like complexes contribute new insights into the molecular mechanisms that mediate the switch from a cross-exon to a cross-intron organized spliceosome.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07458-1</identifier><identifier>PMID: 38778104</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 101/58 ; 631/337/1645/1792 ; 631/535/1258/1259 ; Alternative Splicing ; Assembly ; Catalysis ; Cryoelectron Microscopy ; Electron microscopes ; Electron microscopy ; Exons - genetics ; Humanities and Social Sciences ; Humans ; Introns - genetics ; Microscopy ; Models, Molecular ; Molecular modelling ; mRNA ; multidisciplinary ; Proteins ; Ribonucleoproteins (small nuclear) ; Ribonucleoproteins, Small Nuclear - chemistry ; Ribonucleoproteins, Small Nuclear - metabolism ; Ribonucleoproteins, Small Nuclear - ultrastructure ; RNA Splice Sites - genetics ; RNA Splicing - genetics ; Science ; Science (multidisciplinary) ; Spliceosomes - chemistry ; Spliceosomes - metabolism ; Spliceosomes - ultrastructure ; Transmission electron microscopy ; Upstream</subject><ispartof>Nature (London), 2024-06, Vol.630 (8018), p.1012-1019</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Jun 27, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-60a392d6858205263602fa603ba409af0e8a0c3c5ff14bb3f4bd7ec09875c9863</cites><orcidid>0000-0002-6161-1118 ; 0000-0003-2906-9346 ; 0000-0001-6005-7242 ; 0000-0003-1837-5233 ; 0000-0003-3253-7518 ; 0000-0001-6642-8876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38778104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhenwei</creatorcontrib><creatorcontrib>Kumar, Vinay</creatorcontrib><creatorcontrib>Dybkov, Olexandr</creatorcontrib><creatorcontrib>Will, Cindy L.</creatorcontrib><creatorcontrib>Zhong, Jiayun</creatorcontrib><creatorcontrib>Ludwig, Sebastian E. J.</creatorcontrib><creatorcontrib>Urlaub, Henning</creatorcontrib><creatorcontrib>Kastner, Berthold</creatorcontrib><creatorcontrib>Stark, Holger</creatorcontrib><creatorcontrib>Lührmann, Reinhard</creatorcontrib><title>Structural insights into the cross-exon to cross-intron spliceosome switch</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron
1
. Alternatively, it can occur through an exon-defined pathway
2
–
5
, whereby U2 binds the branch site located upstream of the defined exon and U1 snRNP interacts with the 5′ splice site located directly downstream of it. The U4/U6.U5 tri-snRNP subsequently binds to produce a cross-intron (CI) or cross-exon (CE) pre-B complex, which is then converted to the spliceosomal B complex
6
,
7
. Exon definition promotes the splicing of upstream introns
2
,
8
,
9
and plays a key part in alternative splicing regulation
10
–
16
. However, the three-dimensional structure of exon-defined spliceosomal complexes and the molecular mechanism of the conversion from a CE-organized to a CI-organized spliceosome, a pre-requisite for splicing catalysis, remain poorly understood. Here cryo-electron microscopy analyses of human CE pre-B complex and B-like complexes reveal extensive structural similarities with their CI counterparts. The results indicate that the CE and CI spliceosome assembly pathways converge already at the pre-B stage. Add-back experiments using purified CE pre-B complexes, coupled with cryo-electron microscopy, elucidate the order of the extensive remodelling events that accompany the formation of B complexes and B-like complexes. The molecular triggers and roles of B-specific proteins in these rearrangements are also identified. We show that CE pre-B complexes can productively bind
in trans
to a U1 snRNP-bound 5′ splice site. Together, our studies provide new mechanistic insights into the CE to CI switch during spliceosome assembly and its effect on pre-mRNA splice site pairing at this stage.
Cryo-electron microscopy structures of cross-exon pre-B and B-like complexes contribute new insights into the molecular mechanisms that mediate the switch from a cross-exon to a cross-intron organized spliceosome.</description><subject>101/28</subject><subject>101/58</subject><subject>631/337/1645/1792</subject><subject>631/535/1258/1259</subject><subject>Alternative Splicing</subject><subject>Assembly</subject><subject>Catalysis</subject><subject>Cryoelectron Microscopy</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Exons - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Introns - genetics</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>Molecular modelling</subject><subject>mRNA</subject><subject>multidisciplinary</subject><subject>Proteins</subject><subject>Ribonucleoproteins (small nuclear)</subject><subject>Ribonucleoproteins, Small Nuclear - chemistry</subject><subject>Ribonucleoproteins, Small Nuclear - metabolism</subject><subject>Ribonucleoproteins, Small Nuclear - ultrastructure</subject><subject>RNA Splice Sites - genetics</subject><subject>RNA Splicing - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spliceosomes - chemistry</subject><subject>Spliceosomes - metabolism</subject><subject>Spliceosomes - ultrastructure</subject><subject>Transmission electron microscopy</subject><subject>Upstream</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PGzEQhi1ERdLAH-BQrdQLF9Pxt_eEEOKjVaQeWs6W1_EmG23Wqb1L6b_HsCG0PXCyx_PM65l5ETolcE6A6S-JE6ElBsoxKC40JgdoSriSmEutDtEUgGoMmskJ-pjSGgAEUfwITZhWShPgU_TtRx8H1w_RtkXTpWa56lO-9KHoV75wMaSE_WPoivwyRjkZc5y2beN8SGHji_S76d3qGH2obZv8ye6cofub659Xd3j-_fbr1eUcO05ljyVYVtKF1EJTEFQyCbS2ElhlOZS2Bq8tOOZEXRNeVazm1UJ5B6VWwpVashm6GHW3Q7XxC-dzQ7Y129hsbPxjgm3Mv5muWZlleDCEUNCE6axwtlOI4dfgU282TXK-bW3nw5AMA1FSwXOHGf38H7oOQ-zyfJlSXOd9MpYpOlIvK4q-3ndDwDx7ZUavTPbKvHhlSC769Pcc-5JXczLARiDlVLf08e3vd2SfAJ6noDA</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>Zhang, Zhenwei</creator><creator>Kumar, Vinay</creator><creator>Dybkov, Olexandr</creator><creator>Will, Cindy L.</creator><creator>Zhong, Jiayun</creator><creator>Ludwig, Sebastian E. J.</creator><creator>Urlaub, Henning</creator><creator>Kastner, Berthold</creator><creator>Stark, Holger</creator><creator>Lührmann, Reinhard</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6161-1118</orcidid><orcidid>https://orcid.org/0000-0003-2906-9346</orcidid><orcidid>https://orcid.org/0000-0001-6005-7242</orcidid><orcidid>https://orcid.org/0000-0003-1837-5233</orcidid><orcidid>https://orcid.org/0000-0003-3253-7518</orcidid><orcidid>https://orcid.org/0000-0001-6642-8876</orcidid></search><sort><creationdate>20240627</creationdate><title>Structural insights into the cross-exon to cross-intron spliceosome switch</title><author>Zhang, Zhenwei ; Kumar, Vinay ; Dybkov, Olexandr ; Will, Cindy L. ; Zhong, Jiayun ; Ludwig, Sebastian E. J. ; Urlaub, Henning ; Kastner, Berthold ; Stark, Holger ; Lührmann, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-60a392d6858205263602fa603ba409af0e8a0c3c5ff14bb3f4bd7ec09875c9863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>101/28</topic><topic>101/58</topic><topic>631/337/1645/1792</topic><topic>631/535/1258/1259</topic><topic>Alternative Splicing</topic><topic>Assembly</topic><topic>Catalysis</topic><topic>Cryoelectron Microscopy</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Exons - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Introns - genetics</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>Molecular modelling</topic><topic>mRNA</topic><topic>multidisciplinary</topic><topic>Proteins</topic><topic>Ribonucleoproteins (small nuclear)</topic><topic>Ribonucleoproteins, Small Nuclear - chemistry</topic><topic>Ribonucleoproteins, Small Nuclear - metabolism</topic><topic>Ribonucleoproteins, Small Nuclear - ultrastructure</topic><topic>RNA Splice Sites - genetics</topic><topic>RNA Splicing - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spliceosomes - chemistry</topic><topic>Spliceosomes - metabolism</topic><topic>Spliceosomes - ultrastructure</topic><topic>Transmission electron microscopy</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhenwei</creatorcontrib><creatorcontrib>Kumar, Vinay</creatorcontrib><creatorcontrib>Dybkov, Olexandr</creatorcontrib><creatorcontrib>Will, Cindy L.</creatorcontrib><creatorcontrib>Zhong, Jiayun</creatorcontrib><creatorcontrib>Ludwig, Sebastian E. J.</creatorcontrib><creatorcontrib>Urlaub, Henning</creatorcontrib><creatorcontrib>Kastner, Berthold</creatorcontrib><creatorcontrib>Stark, Holger</creatorcontrib><creatorcontrib>Lührmann, Reinhard</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhenwei</au><au>Kumar, Vinay</au><au>Dybkov, Olexandr</au><au>Will, Cindy L.</au><au>Zhong, Jiayun</au><au>Ludwig, Sebastian E. J.</au><au>Urlaub, Henning</au><au>Kastner, Berthold</au><au>Stark, Holger</au><au>Lührmann, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural insights into the cross-exon to cross-intron spliceosome switch</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-06-27</date><risdate>2024</risdate><volume>630</volume><issue>8018</issue><spage>1012</spage><epage>1019</epage><pages>1012-1019</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron
1
. Alternatively, it can occur through an exon-defined pathway
2
–
5
, whereby U2 binds the branch site located upstream of the defined exon and U1 snRNP interacts with the 5′ splice site located directly downstream of it. The U4/U6.U5 tri-snRNP subsequently binds to produce a cross-intron (CI) or cross-exon (CE) pre-B complex, which is then converted to the spliceosomal B complex
6
,
7
. Exon definition promotes the splicing of upstream introns
2
,
8
,
9
and plays a key part in alternative splicing regulation
10
–
16
. However, the three-dimensional structure of exon-defined spliceosomal complexes and the molecular mechanism of the conversion from a CE-organized to a CI-organized spliceosome, a pre-requisite for splicing catalysis, remain poorly understood. Here cryo-electron microscopy analyses of human CE pre-B complex and B-like complexes reveal extensive structural similarities with their CI counterparts. The results indicate that the CE and CI spliceosome assembly pathways converge already at the pre-B stage. Add-back experiments using purified CE pre-B complexes, coupled with cryo-electron microscopy, elucidate the order of the extensive remodelling events that accompany the formation of B complexes and B-like complexes. The molecular triggers and roles of B-specific proteins in these rearrangements are also identified. We show that CE pre-B complexes can productively bind
in trans
to a U1 snRNP-bound 5′ splice site. Together, our studies provide new mechanistic insights into the CE to CI switch during spliceosome assembly and its effect on pre-mRNA splice site pairing at this stage.
Cryo-electron microscopy structures of cross-exon pre-B and B-like complexes contribute new insights into the molecular mechanisms that mediate the switch from a cross-exon to a cross-intron organized spliceosome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38778104</pmid><doi>10.1038/s41586-024-07458-1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6161-1118</orcidid><orcidid>https://orcid.org/0000-0003-2906-9346</orcidid><orcidid>https://orcid.org/0000-0001-6005-7242</orcidid><orcidid>https://orcid.org/0000-0003-1837-5233</orcidid><orcidid>https://orcid.org/0000-0003-3253-7518</orcidid><orcidid>https://orcid.org/0000-0001-6642-8876</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-06, Vol.630 (8018), p.1012-1019 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11208138 |
source | Nature Publishing Group |
subjects | 101/28 101/58 631/337/1645/1792 631/535/1258/1259 Alternative Splicing Assembly Catalysis Cryoelectron Microscopy Electron microscopes Electron microscopy Exons - genetics Humanities and Social Sciences Humans Introns - genetics Microscopy Models, Molecular Molecular modelling mRNA multidisciplinary Proteins Ribonucleoproteins (small nuclear) Ribonucleoproteins, Small Nuclear - chemistry Ribonucleoproteins, Small Nuclear - metabolism Ribonucleoproteins, Small Nuclear - ultrastructure RNA Splice Sites - genetics RNA Splicing - genetics Science Science (multidisciplinary) Spliceosomes - chemistry Spliceosomes - metabolism Spliceosomes - ultrastructure Transmission electron microscopy Upstream |
title | Structural insights into the cross-exon to cross-intron spliceosome switch |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20insights%20into%20the%20cross-exon%20to%20cross-intron%20spliceosome%20switch&rft.jtitle=Nature%20(London)&rft.au=Zhang,%20Zhenwei&rft.date=2024-06-27&rft.volume=630&rft.issue=8018&rft.spage=1012&rft.epage=1019&rft.pages=1012-1019&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07458-1&rft_dat=%3Cproquest_pubme%3E3059254858%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-60a392d6858205263602fa603ba409af0e8a0c3c5ff14bb3f4bd7ec09875c9863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3074817433&rft_id=info:pmid/38778104&rfr_iscdi=true |