Loading…

Structural insights into the cross-exon to cross-intron spliceosome switch

Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron 1 . Alternatively, it can occur through an exon-defined pathway 2 – 5 , whereby U2 binds the branch site located upstream of the def...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2024-06, Vol.630 (8018), p.1012-1019
Main Authors: Zhang, Zhenwei, Kumar, Vinay, Dybkov, Olexandr, Will, Cindy L., Zhong, Jiayun, Ludwig, Sebastian E. J., Urlaub, Henning, Kastner, Berthold, Stark, Holger, Lührmann, Reinhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c426t-60a392d6858205263602fa603ba409af0e8a0c3c5ff14bb3f4bd7ec09875c9863
container_end_page 1019
container_issue 8018
container_start_page 1012
container_title Nature (London)
container_volume 630
creator Zhang, Zhenwei
Kumar, Vinay
Dybkov, Olexandr
Will, Cindy L.
Zhong, Jiayun
Ludwig, Sebastian E. J.
Urlaub, Henning
Kastner, Berthold
Stark, Holger
Lührmann, Reinhard
description Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron 1 . Alternatively, it can occur through an exon-defined pathway 2 – 5 , whereby U2 binds the branch site located upstream of the defined exon and U1 snRNP interacts with the 5′ splice site located directly downstream of it. The U4/U6.U5 tri-snRNP subsequently binds to produce a cross-intron (CI) or cross-exon (CE) pre-B complex, which is then converted to the spliceosomal B complex 6 , 7 . Exon definition promotes the splicing of upstream introns 2 , 8 , 9 and plays a key part in alternative splicing regulation 10 – 16 . However, the three-dimensional structure of exon-defined spliceosomal complexes and the molecular mechanism of the conversion from a CE-organized to a CI-organized spliceosome, a pre-requisite for splicing catalysis, remain poorly understood. Here cryo-electron microscopy analyses of human CE pre-B complex and B-like complexes reveal extensive structural similarities with their CI counterparts. The results indicate that the CE and CI spliceosome assembly pathways converge already at the pre-B stage. Add-back experiments using purified CE pre-B complexes, coupled with cryo-electron microscopy, elucidate the order of the extensive remodelling events that accompany the formation of B complexes and B-like complexes. The molecular triggers and roles of B-specific proteins in these rearrangements are also identified. We show that CE pre-B complexes can productively bind in trans to a U1 snRNP-bound 5′ splice site. Together, our studies provide new mechanistic insights into the CE to CI switch during spliceosome assembly and its effect on pre-mRNA splice site pairing at this stage. Cryo-electron microscopy structures of cross-exon pre-B and B-like complexes contribute new insights into the molecular mechanisms that mediate the switch from a cross-exon to a cross-intron organized spliceosome.
doi_str_mv 10.1038/s41586-024-07458-1
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11208138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059254858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-60a392d6858205263602fa603ba409af0e8a0c3c5ff14bb3f4bd7ec09875c9863</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhi1ERdLAH-BQrdQLF9Pxt_eEEOKjVaQeWs6W1_EmG23Wqb1L6b_HsCG0PXCyx_PM65l5ETolcE6A6S-JE6ElBsoxKC40JgdoSriSmEutDtEUgGoMmskJ-pjSGgAEUfwITZhWShPgU_TtRx8H1w_RtkXTpWa56lO-9KHoV75wMaSE_WPoivwyRjkZc5y2beN8SGHji_S76d3qGH2obZv8ye6cofub659Xd3j-_fbr1eUcO05ljyVYVtKF1EJTEFQyCbS2ElhlOZS2Bq8tOOZEXRNeVazm1UJ5B6VWwpVashm6GHW3Q7XxC-dzQ7Y129hsbPxjgm3Mv5muWZlleDCEUNCE6axwtlOI4dfgU282TXK-bW3nw5AMA1FSwXOHGf38H7oOQ-zyfJlSXOd9MpYpOlIvK4q-3ndDwDx7ZUavTPbKvHhlSC769Pcc-5JXczLARiDlVLf08e3vd2SfAJ6noDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074817433</pqid></control><display><type>article</type><title>Structural insights into the cross-exon to cross-intron spliceosome switch</title><source>Nature Publishing Group</source><creator>Zhang, Zhenwei ; Kumar, Vinay ; Dybkov, Olexandr ; Will, Cindy L. ; Zhong, Jiayun ; Ludwig, Sebastian E. J. ; Urlaub, Henning ; Kastner, Berthold ; Stark, Holger ; Lührmann, Reinhard</creator><creatorcontrib>Zhang, Zhenwei ; Kumar, Vinay ; Dybkov, Olexandr ; Will, Cindy L. ; Zhong, Jiayun ; Ludwig, Sebastian E. J. ; Urlaub, Henning ; Kastner, Berthold ; Stark, Holger ; Lührmann, Reinhard</creatorcontrib><description>Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron 1 . Alternatively, it can occur through an exon-defined pathway 2 – 5 , whereby U2 binds the branch site located upstream of the defined exon and U1 snRNP interacts with the 5′ splice site located directly downstream of it. The U4/U6.U5 tri-snRNP subsequently binds to produce a cross-intron (CI) or cross-exon (CE) pre-B complex, which is then converted to the spliceosomal B complex 6 , 7 . Exon definition promotes the splicing of upstream introns 2 , 8 , 9 and plays a key part in alternative splicing regulation 10 – 16 . However, the three-dimensional structure of exon-defined spliceosomal complexes and the molecular mechanism of the conversion from a CE-organized to a CI-organized spliceosome, a pre-requisite for splicing catalysis, remain poorly understood. Here cryo-electron microscopy analyses of human CE pre-B complex and B-like complexes reveal extensive structural similarities with their CI counterparts. The results indicate that the CE and CI spliceosome assembly pathways converge already at the pre-B stage. Add-back experiments using purified CE pre-B complexes, coupled with cryo-electron microscopy, elucidate the order of the extensive remodelling events that accompany the formation of B complexes and B-like complexes. The molecular triggers and roles of B-specific proteins in these rearrangements are also identified. We show that CE pre-B complexes can productively bind in trans to a U1 snRNP-bound 5′ splice site. Together, our studies provide new mechanistic insights into the CE to CI switch during spliceosome assembly and its effect on pre-mRNA splice site pairing at this stage. Cryo-electron microscopy structures of cross-exon pre-B and B-like complexes contribute new insights into the molecular mechanisms that mediate the switch from a cross-exon to a cross-intron organized spliceosome.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07458-1</identifier><identifier>PMID: 38778104</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 101/58 ; 631/337/1645/1792 ; 631/535/1258/1259 ; Alternative Splicing ; Assembly ; Catalysis ; Cryoelectron Microscopy ; Electron microscopes ; Electron microscopy ; Exons - genetics ; Humanities and Social Sciences ; Humans ; Introns - genetics ; Microscopy ; Models, Molecular ; Molecular modelling ; mRNA ; multidisciplinary ; Proteins ; Ribonucleoproteins (small nuclear) ; Ribonucleoproteins, Small Nuclear - chemistry ; Ribonucleoproteins, Small Nuclear - metabolism ; Ribonucleoproteins, Small Nuclear - ultrastructure ; RNA Splice Sites - genetics ; RNA Splicing - genetics ; Science ; Science (multidisciplinary) ; Spliceosomes - chemistry ; Spliceosomes - metabolism ; Spliceosomes - ultrastructure ; Transmission electron microscopy ; Upstream</subject><ispartof>Nature (London), 2024-06, Vol.630 (8018), p.1012-1019</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Jun 27, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-60a392d6858205263602fa603ba409af0e8a0c3c5ff14bb3f4bd7ec09875c9863</cites><orcidid>0000-0002-6161-1118 ; 0000-0003-2906-9346 ; 0000-0001-6005-7242 ; 0000-0003-1837-5233 ; 0000-0003-3253-7518 ; 0000-0001-6642-8876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38778104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhenwei</creatorcontrib><creatorcontrib>Kumar, Vinay</creatorcontrib><creatorcontrib>Dybkov, Olexandr</creatorcontrib><creatorcontrib>Will, Cindy L.</creatorcontrib><creatorcontrib>Zhong, Jiayun</creatorcontrib><creatorcontrib>Ludwig, Sebastian E. J.</creatorcontrib><creatorcontrib>Urlaub, Henning</creatorcontrib><creatorcontrib>Kastner, Berthold</creatorcontrib><creatorcontrib>Stark, Holger</creatorcontrib><creatorcontrib>Lührmann, Reinhard</creatorcontrib><title>Structural insights into the cross-exon to cross-intron spliceosome switch</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron 1 . Alternatively, it can occur through an exon-defined pathway 2 – 5 , whereby U2 binds the branch site located upstream of the defined exon and U1 snRNP interacts with the 5′ splice site located directly downstream of it. The U4/U6.U5 tri-snRNP subsequently binds to produce a cross-intron (CI) or cross-exon (CE) pre-B complex, which is then converted to the spliceosomal B complex 6 , 7 . Exon definition promotes the splicing of upstream introns 2 , 8 , 9 and plays a key part in alternative splicing regulation 10 – 16 . However, the three-dimensional structure of exon-defined spliceosomal complexes and the molecular mechanism of the conversion from a CE-organized to a CI-organized spliceosome, a pre-requisite for splicing catalysis, remain poorly understood. Here cryo-electron microscopy analyses of human CE pre-B complex and B-like complexes reveal extensive structural similarities with their CI counterparts. The results indicate that the CE and CI spliceosome assembly pathways converge already at the pre-B stage. Add-back experiments using purified CE pre-B complexes, coupled with cryo-electron microscopy, elucidate the order of the extensive remodelling events that accompany the formation of B complexes and B-like complexes. The molecular triggers and roles of B-specific proteins in these rearrangements are also identified. We show that CE pre-B complexes can productively bind in trans to a U1 snRNP-bound 5′ splice site. Together, our studies provide new mechanistic insights into the CE to CI switch during spliceosome assembly and its effect on pre-mRNA splice site pairing at this stage. Cryo-electron microscopy structures of cross-exon pre-B and B-like complexes contribute new insights into the molecular mechanisms that mediate the switch from a cross-exon to a cross-intron organized spliceosome.</description><subject>101/28</subject><subject>101/58</subject><subject>631/337/1645/1792</subject><subject>631/535/1258/1259</subject><subject>Alternative Splicing</subject><subject>Assembly</subject><subject>Catalysis</subject><subject>Cryoelectron Microscopy</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Exons - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Introns - genetics</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>Molecular modelling</subject><subject>mRNA</subject><subject>multidisciplinary</subject><subject>Proteins</subject><subject>Ribonucleoproteins (small nuclear)</subject><subject>Ribonucleoproteins, Small Nuclear - chemistry</subject><subject>Ribonucleoproteins, Small Nuclear - metabolism</subject><subject>Ribonucleoproteins, Small Nuclear - ultrastructure</subject><subject>RNA Splice Sites - genetics</subject><subject>RNA Splicing - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spliceosomes - chemistry</subject><subject>Spliceosomes - metabolism</subject><subject>Spliceosomes - ultrastructure</subject><subject>Transmission electron microscopy</subject><subject>Upstream</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PGzEQhi1ERdLAH-BQrdQLF9Pxt_eEEOKjVaQeWs6W1_EmG23Wqb1L6b_HsCG0PXCyx_PM65l5ETolcE6A6S-JE6ElBsoxKC40JgdoSriSmEutDtEUgGoMmskJ-pjSGgAEUfwITZhWShPgU_TtRx8H1w_RtkXTpWa56lO-9KHoV75wMaSE_WPoivwyRjkZc5y2beN8SGHji_S76d3qGH2obZv8ye6cofub659Xd3j-_fbr1eUcO05ljyVYVtKF1EJTEFQyCbS2ElhlOZS2Bq8tOOZEXRNeVazm1UJ5B6VWwpVashm6GHW3Q7XxC-dzQ7Y129hsbPxjgm3Mv5muWZlleDCEUNCE6axwtlOI4dfgU282TXK-bW3nw5AMA1FSwXOHGf38H7oOQ-zyfJlSXOd9MpYpOlIvK4q-3ndDwDx7ZUavTPbKvHhlSC769Pcc-5JXczLARiDlVLf08e3vd2SfAJ6noDA</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>Zhang, Zhenwei</creator><creator>Kumar, Vinay</creator><creator>Dybkov, Olexandr</creator><creator>Will, Cindy L.</creator><creator>Zhong, Jiayun</creator><creator>Ludwig, Sebastian E. J.</creator><creator>Urlaub, Henning</creator><creator>Kastner, Berthold</creator><creator>Stark, Holger</creator><creator>Lührmann, Reinhard</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6161-1118</orcidid><orcidid>https://orcid.org/0000-0003-2906-9346</orcidid><orcidid>https://orcid.org/0000-0001-6005-7242</orcidid><orcidid>https://orcid.org/0000-0003-1837-5233</orcidid><orcidid>https://orcid.org/0000-0003-3253-7518</orcidid><orcidid>https://orcid.org/0000-0001-6642-8876</orcidid></search><sort><creationdate>20240627</creationdate><title>Structural insights into the cross-exon to cross-intron spliceosome switch</title><author>Zhang, Zhenwei ; Kumar, Vinay ; Dybkov, Olexandr ; Will, Cindy L. ; Zhong, Jiayun ; Ludwig, Sebastian E. J. ; Urlaub, Henning ; Kastner, Berthold ; Stark, Holger ; Lührmann, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-60a392d6858205263602fa603ba409af0e8a0c3c5ff14bb3f4bd7ec09875c9863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>101/28</topic><topic>101/58</topic><topic>631/337/1645/1792</topic><topic>631/535/1258/1259</topic><topic>Alternative Splicing</topic><topic>Assembly</topic><topic>Catalysis</topic><topic>Cryoelectron Microscopy</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Exons - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Introns - genetics</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>Molecular modelling</topic><topic>mRNA</topic><topic>multidisciplinary</topic><topic>Proteins</topic><topic>Ribonucleoproteins (small nuclear)</topic><topic>Ribonucleoproteins, Small Nuclear - chemistry</topic><topic>Ribonucleoproteins, Small Nuclear - metabolism</topic><topic>Ribonucleoproteins, Small Nuclear - ultrastructure</topic><topic>RNA Splice Sites - genetics</topic><topic>RNA Splicing - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spliceosomes - chemistry</topic><topic>Spliceosomes - metabolism</topic><topic>Spliceosomes - ultrastructure</topic><topic>Transmission electron microscopy</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhenwei</creatorcontrib><creatorcontrib>Kumar, Vinay</creatorcontrib><creatorcontrib>Dybkov, Olexandr</creatorcontrib><creatorcontrib>Will, Cindy L.</creatorcontrib><creatorcontrib>Zhong, Jiayun</creatorcontrib><creatorcontrib>Ludwig, Sebastian E. J.</creatorcontrib><creatorcontrib>Urlaub, Henning</creatorcontrib><creatorcontrib>Kastner, Berthold</creatorcontrib><creatorcontrib>Stark, Holger</creatorcontrib><creatorcontrib>Lührmann, Reinhard</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhenwei</au><au>Kumar, Vinay</au><au>Dybkov, Olexandr</au><au>Will, Cindy L.</au><au>Zhong, Jiayun</au><au>Ludwig, Sebastian E. J.</au><au>Urlaub, Henning</au><au>Kastner, Berthold</au><au>Stark, Holger</au><au>Lührmann, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural insights into the cross-exon to cross-intron spliceosome switch</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-06-27</date><risdate>2024</risdate><volume>630</volume><issue>8018</issue><spage>1012</spage><epage>1019</epage><pages>1012-1019</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron 1 . Alternatively, it can occur through an exon-defined pathway 2 – 5 , whereby U2 binds the branch site located upstream of the defined exon and U1 snRNP interacts with the 5′ splice site located directly downstream of it. The U4/U6.U5 tri-snRNP subsequently binds to produce a cross-intron (CI) or cross-exon (CE) pre-B complex, which is then converted to the spliceosomal B complex 6 , 7 . Exon definition promotes the splicing of upstream introns 2 , 8 , 9 and plays a key part in alternative splicing regulation 10 – 16 . However, the three-dimensional structure of exon-defined spliceosomal complexes and the molecular mechanism of the conversion from a CE-organized to a CI-organized spliceosome, a pre-requisite for splicing catalysis, remain poorly understood. Here cryo-electron microscopy analyses of human CE pre-B complex and B-like complexes reveal extensive structural similarities with their CI counterparts. The results indicate that the CE and CI spliceosome assembly pathways converge already at the pre-B stage. Add-back experiments using purified CE pre-B complexes, coupled with cryo-electron microscopy, elucidate the order of the extensive remodelling events that accompany the formation of B complexes and B-like complexes. The molecular triggers and roles of B-specific proteins in these rearrangements are also identified. We show that CE pre-B complexes can productively bind in trans to a U1 snRNP-bound 5′ splice site. Together, our studies provide new mechanistic insights into the CE to CI switch during spliceosome assembly and its effect on pre-mRNA splice site pairing at this stage. Cryo-electron microscopy structures of cross-exon pre-B and B-like complexes contribute new insights into the molecular mechanisms that mediate the switch from a cross-exon to a cross-intron organized spliceosome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38778104</pmid><doi>10.1038/s41586-024-07458-1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6161-1118</orcidid><orcidid>https://orcid.org/0000-0003-2906-9346</orcidid><orcidid>https://orcid.org/0000-0001-6005-7242</orcidid><orcidid>https://orcid.org/0000-0003-1837-5233</orcidid><orcidid>https://orcid.org/0000-0003-3253-7518</orcidid><orcidid>https://orcid.org/0000-0001-6642-8876</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-06, Vol.630 (8018), p.1012-1019
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11208138
source Nature Publishing Group
subjects 101/28
101/58
631/337/1645/1792
631/535/1258/1259
Alternative Splicing
Assembly
Catalysis
Cryoelectron Microscopy
Electron microscopes
Electron microscopy
Exons - genetics
Humanities and Social Sciences
Humans
Introns - genetics
Microscopy
Models, Molecular
Molecular modelling
mRNA
multidisciplinary
Proteins
Ribonucleoproteins (small nuclear)
Ribonucleoproteins, Small Nuclear - chemistry
Ribonucleoproteins, Small Nuclear - metabolism
Ribonucleoproteins, Small Nuclear - ultrastructure
RNA Splice Sites - genetics
RNA Splicing - genetics
Science
Science (multidisciplinary)
Spliceosomes - chemistry
Spliceosomes - metabolism
Spliceosomes - ultrastructure
Transmission electron microscopy
Upstream
title Structural insights into the cross-exon to cross-intron spliceosome switch
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20insights%20into%20the%20cross-exon%20to%20cross-intron%20spliceosome%20switch&rft.jtitle=Nature%20(London)&rft.au=Zhang,%20Zhenwei&rft.date=2024-06-27&rft.volume=630&rft.issue=8018&rft.spage=1012&rft.epage=1019&rft.pages=1012-1019&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07458-1&rft_dat=%3Cproquest_pubme%3E3059254858%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-60a392d6858205263602fa603ba409af0e8a0c3c5ff14bb3f4bd7ec09875c9863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3074817433&rft_id=info:pmid/38778104&rfr_iscdi=true