Loading…

Molecular basis for transposase activation by a dedicated AAA+ ATPase

Transposases drive chromosomal rearrangements and the dissemination of drug-resistance genes and toxins 1 – 3 . Although some transposases act alone, many rely on dedicated AAA+ ATPase subunits that regulate site selectivity and catalytic function through poorly understood mechanisms. Using IS 21 as...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2024-06, Vol.630 (8018), p.1003-1011
Main Authors: de la Gándara, Álvaro, Spínola-Amilibia, Mercedes, Araújo-Bazán, Lidia, Núñez-Ramírez, Rafael, Berger, James M., Arias-Palomo, Ernesto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3906-a405de9121e75d0214de75744685f54098cd0fa914fa0bfc0b1184b8e3f6ce33
cites cdi_FETCH-LOGICAL-c3906-a405de9121e75d0214de75744685f54098cd0fa914fa0bfc0b1184b8e3f6ce33
container_end_page 1011
container_issue 8018
container_start_page 1003
container_title Nature (London)
container_volume 630
creator de la Gándara, Álvaro
Spínola-Amilibia, Mercedes
Araújo-Bazán, Lidia
Núñez-Ramírez, Rafael
Berger, James M.
Arias-Palomo, Ernesto
description Transposases drive chromosomal rearrangements and the dissemination of drug-resistance genes and toxins 1 – 3 . Although some transposases act alone, many rely on dedicated AAA+ ATPase subunits that regulate site selectivity and catalytic function through poorly understood mechanisms. Using IS 21 as a model transposase system, we show how an ATPase regulator uses nucleotide-controlled assembly and DNA deformation to enable structure-based site selectivity, transposase recruitment, and activation and integration. Solution and cryogenic electron microscopy studies show that the IstB ATPase self-assembles into an autoinhibited pentamer of dimers that tightly curves target DNA into a half-coil. Two of these decamers dimerize, which stabilizes the target nucleic acid into a kinked S-shaped configuration that engages the IstA transposase at the interface between the two IstB oligomers to form an approximately 1 MDa transpososome complex. Specific interactions stimulate regulator ATPase activity and trigger a large conformational change on the transposase that positions the catalytic site to perform DNA strand transfer. These studies help explain how AAA+ ATPase regulators—which are used by classical transposition systems such as Tn7, Mu and CRISPR-associated elements—can remodel their substrate DNA and cognate transposases to promote function. Solution and cryogenic electron microscopy studies using IS 21 as a model transposase system show how AAA+ ATPases induce structural changes to prime target DNA and activate their associated transposases.
doi_str_mv 10.1038/s41586-024-07550-6
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11208146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072801376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3906-a405de9121e75d0214de75744685f54098cd0fa914fa0bfc0b1184b8e3f6ce33</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJyW4-_kAPQZBLILidsT4sn4IJm7SQ0h72LmRZ3jp4rY1kB_bfR5vNR9NDTzMwz7zzDi8hXxC-IjD1LXIUSmaQ8wwKISCTn8gceSEzLlVxQOYAucpAMTkjRzHeA4DAgh-SGVNlLiXyOVn89L2zU28CrU3sIm19oGMwQ9z4aKKjxo7doxk7P9B6Sw1tXNNZM7qGVlV1Savl70SdkM-t6aM7fanHZHmzWF5_z-5-3f64ru4yy0qQmeEgGldijq4QDeTIm9QUPNkVreBQKttAa0rkrYG6tVAjKl4rx1ppHWPH5Govu5nqtWusG5LTXm9CtzZhq73p9MfJ0P3RK_-oEXNQyGVSuHhRCP5hcnHU6y5a1_dmcH6KmkGRK0BW7NDzf9B7P4UhvbejuEIhngXzPWWDjzG49s0Ngt6lpPcp6ZSSfk5J75bO_v7jbeU1lgSwPRDTaFi58H77P7JPLzScAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074815546</pqid></control><display><type>article</type><title>Molecular basis for transposase activation by a dedicated AAA+ ATPase</title><source>Nexis UK</source><source>Nature</source><creator>de la Gándara, Álvaro ; Spínola-Amilibia, Mercedes ; Araújo-Bazán, Lidia ; Núñez-Ramírez, Rafael ; Berger, James M. ; Arias-Palomo, Ernesto</creator><creatorcontrib>de la Gándara, Álvaro ; Spínola-Amilibia, Mercedes ; Araújo-Bazán, Lidia ; Núñez-Ramírez, Rafael ; Berger, James M. ; Arias-Palomo, Ernesto</creatorcontrib><description>Transposases drive chromosomal rearrangements and the dissemination of drug-resistance genes and toxins 1 – 3 . Although some transposases act alone, many rely on dedicated AAA+ ATPase subunits that regulate site selectivity and catalytic function through poorly understood mechanisms. Using IS 21 as a model transposase system, we show how an ATPase regulator uses nucleotide-controlled assembly and DNA deformation to enable structure-based site selectivity, transposase recruitment, and activation and integration. Solution and cryogenic electron microscopy studies show that the IstB ATPase self-assembles into an autoinhibited pentamer of dimers that tightly curves target DNA into a half-coil. Two of these decamers dimerize, which stabilizes the target nucleic acid into a kinked S-shaped configuration that engages the IstA transposase at the interface between the two IstB oligomers to form an approximately 1 MDa transpososome complex. Specific interactions stimulate regulator ATPase activity and trigger a large conformational change on the transposase that positions the catalytic site to perform DNA strand transfer. These studies help explain how AAA+ ATPase regulators—which are used by classical transposition systems such as Tn7, Mu and CRISPR-associated elements—can remodel their substrate DNA and cognate transposases to promote function. Solution and cryogenic electron microscopy studies using IS 21 as a model transposase system show how AAA+ ATPases induce structural changes to prime target DNA and activate their associated transposases.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07550-6</identifier><identifier>PMID: 38926614</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/28 ; 45 ; 45/29 ; 45/70 ; 631/337/2569 ; 631/535/1258/1259 ; 82 ; 82/16 ; 82/29 ; 82/80 ; 82/83 ; AAA Domain ; Adenosine triphosphatase ; Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - metabolism ; Catalytic Domain ; Chromosome rearrangements ; CRISPR ; Cryoelectron Microscopy ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; DNA structure ; DNA Transposable Elements - genetics ; Electron microscopy ; Enzyme Activation ; Humanities and Social Sciences ; Microscopy ; Models, Molecular ; multidisciplinary ; Nucleic acids ; Nucleotides ; Protein Multimerization ; Proteins ; Science ; Science (multidisciplinary) ; Substrates ; Transcription activation ; Transposase ; Transposases - chemistry ; Transposases - metabolism ; Transposition</subject><ispartof>Nature (London), 2024-06, Vol.630 (8018), p.1003-1011</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Jun 27, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3906-a405de9121e75d0214de75744685f54098cd0fa914fa0bfc0b1184b8e3f6ce33</citedby><cites>FETCH-LOGICAL-c3906-a405de9121e75d0214de75744685f54098cd0fa914fa0bfc0b1184b8e3f6ce33</cites><orcidid>0000-0002-8750-7706 ; 0000-0002-0641-8809 ; 0000-0003-0666-1240 ; 0000-0002-2706-7411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38926614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de la Gándara, Álvaro</creatorcontrib><creatorcontrib>Spínola-Amilibia, Mercedes</creatorcontrib><creatorcontrib>Araújo-Bazán, Lidia</creatorcontrib><creatorcontrib>Núñez-Ramírez, Rafael</creatorcontrib><creatorcontrib>Berger, James M.</creatorcontrib><creatorcontrib>Arias-Palomo, Ernesto</creatorcontrib><title>Molecular basis for transposase activation by a dedicated AAA+ ATPase</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Transposases drive chromosomal rearrangements and the dissemination of drug-resistance genes and toxins 1 – 3 . Although some transposases act alone, many rely on dedicated AAA+ ATPase subunits that regulate site selectivity and catalytic function through poorly understood mechanisms. Using IS 21 as a model transposase system, we show how an ATPase regulator uses nucleotide-controlled assembly and DNA deformation to enable structure-based site selectivity, transposase recruitment, and activation and integration. Solution and cryogenic electron microscopy studies show that the IstB ATPase self-assembles into an autoinhibited pentamer of dimers that tightly curves target DNA into a half-coil. Two of these decamers dimerize, which stabilizes the target nucleic acid into a kinked S-shaped configuration that engages the IstA transposase at the interface between the two IstB oligomers to form an approximately 1 MDa transpososome complex. Specific interactions stimulate regulator ATPase activity and trigger a large conformational change on the transposase that positions the catalytic site to perform DNA strand transfer. These studies help explain how AAA+ ATPase regulators—which are used by classical transposition systems such as Tn7, Mu and CRISPR-associated elements—can remodel their substrate DNA and cognate transposases to promote function. Solution and cryogenic electron microscopy studies using IS 21 as a model transposase system show how AAA+ ATPases induce structural changes to prime target DNA and activate their associated transposases.</description><subject>14/28</subject><subject>45</subject><subject>45/29</subject><subject>45/70</subject><subject>631/337/2569</subject><subject>631/535/1258/1259</subject><subject>82</subject><subject>82/16</subject><subject>82/29</subject><subject>82/80</subject><subject>82/83</subject><subject>AAA Domain</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Catalytic Domain</subject><subject>Chromosome rearrangements</subject><subject>CRISPR</subject><subject>Cryoelectron Microscopy</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA structure</subject><subject>DNA Transposable Elements - genetics</subject><subject>Electron microscopy</subject><subject>Enzyme Activation</subject><subject>Humanities and Social Sciences</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>Nucleic acids</subject><subject>Nucleotides</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substrates</subject><subject>Transcription activation</subject><subject>Transposase</subject><subject>Transposases - chemistry</subject><subject>Transposases - metabolism</subject><subject>Transposition</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVJyW4-_kAPQZBLILidsT4sn4IJm7SQ0h72LmRZ3jp4rY1kB_bfR5vNR9NDTzMwz7zzDi8hXxC-IjD1LXIUSmaQ8wwKISCTn8gceSEzLlVxQOYAucpAMTkjRzHeA4DAgh-SGVNlLiXyOVn89L2zU28CrU3sIm19oGMwQ9z4aKKjxo7doxk7P9B6Sw1tXNNZM7qGVlV1Savl70SdkM-t6aM7fanHZHmzWF5_z-5-3f64ru4yy0qQmeEgGldijq4QDeTIm9QUPNkVreBQKttAa0rkrYG6tVAjKl4rx1ppHWPH5Govu5nqtWusG5LTXm9CtzZhq73p9MfJ0P3RK_-oEXNQyGVSuHhRCP5hcnHU6y5a1_dmcH6KmkGRK0BW7NDzf9B7P4UhvbejuEIhngXzPWWDjzG49s0Ngt6lpPcp6ZSSfk5J75bO_v7jbeU1lgSwPRDTaFi58H77P7JPLzScAw</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>de la Gándara, Álvaro</creator><creator>Spínola-Amilibia, Mercedes</creator><creator>Araújo-Bazán, Lidia</creator><creator>Núñez-Ramírez, Rafael</creator><creator>Berger, James M.</creator><creator>Arias-Palomo, Ernesto</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8750-7706</orcidid><orcidid>https://orcid.org/0000-0002-0641-8809</orcidid><orcidid>https://orcid.org/0000-0003-0666-1240</orcidid><orcidid>https://orcid.org/0000-0002-2706-7411</orcidid></search><sort><creationdate>20240627</creationdate><title>Molecular basis for transposase activation by a dedicated AAA+ ATPase</title><author>de la Gándara, Álvaro ; Spínola-Amilibia, Mercedes ; Araújo-Bazán, Lidia ; Núñez-Ramírez, Rafael ; Berger, James M. ; Arias-Palomo, Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3906-a405de9121e75d0214de75744685f54098cd0fa914fa0bfc0b1184b8e3f6ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14/28</topic><topic>45</topic><topic>45/29</topic><topic>45/70</topic><topic>631/337/2569</topic><topic>631/535/1258/1259</topic><topic>82</topic><topic>82/16</topic><topic>82/29</topic><topic>82/80</topic><topic>82/83</topic><topic>AAA Domain</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Catalytic Domain</topic><topic>Chromosome rearrangements</topic><topic>CRISPR</topic><topic>Cryoelectron Microscopy</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA structure</topic><topic>DNA Transposable Elements - genetics</topic><topic>Electron microscopy</topic><topic>Enzyme Activation</topic><topic>Humanities and Social Sciences</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>Nucleic acids</topic><topic>Nucleotides</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substrates</topic><topic>Transcription activation</topic><topic>Transposase</topic><topic>Transposases - chemistry</topic><topic>Transposases - metabolism</topic><topic>Transposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de la Gándara, Álvaro</creatorcontrib><creatorcontrib>Spínola-Amilibia, Mercedes</creatorcontrib><creatorcontrib>Araújo-Bazán, Lidia</creatorcontrib><creatorcontrib>Núñez-Ramírez, Rafael</creatorcontrib><creatorcontrib>Berger, James M.</creatorcontrib><creatorcontrib>Arias-Palomo, Ernesto</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de la Gándara, Álvaro</au><au>Spínola-Amilibia, Mercedes</au><au>Araújo-Bazán, Lidia</au><au>Núñez-Ramírez, Rafael</au><au>Berger, James M.</au><au>Arias-Palomo, Ernesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular basis for transposase activation by a dedicated AAA+ ATPase</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-06-27</date><risdate>2024</risdate><volume>630</volume><issue>8018</issue><spage>1003</spage><epage>1011</epage><pages>1003-1011</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Transposases drive chromosomal rearrangements and the dissemination of drug-resistance genes and toxins 1 – 3 . Although some transposases act alone, many rely on dedicated AAA+ ATPase subunits that regulate site selectivity and catalytic function through poorly understood mechanisms. Using IS 21 as a model transposase system, we show how an ATPase regulator uses nucleotide-controlled assembly and DNA deformation to enable structure-based site selectivity, transposase recruitment, and activation and integration. Solution and cryogenic electron microscopy studies show that the IstB ATPase self-assembles into an autoinhibited pentamer of dimers that tightly curves target DNA into a half-coil. Two of these decamers dimerize, which stabilizes the target nucleic acid into a kinked S-shaped configuration that engages the IstA transposase at the interface between the two IstB oligomers to form an approximately 1 MDa transpososome complex. Specific interactions stimulate regulator ATPase activity and trigger a large conformational change on the transposase that positions the catalytic site to perform DNA strand transfer. These studies help explain how AAA+ ATPase regulators—which are used by classical transposition systems such as Tn7, Mu and CRISPR-associated elements—can remodel their substrate DNA and cognate transposases to promote function. Solution and cryogenic electron microscopy studies using IS 21 as a model transposase system show how AAA+ ATPases induce structural changes to prime target DNA and activate their associated transposases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38926614</pmid><doi>10.1038/s41586-024-07550-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8750-7706</orcidid><orcidid>https://orcid.org/0000-0002-0641-8809</orcidid><orcidid>https://orcid.org/0000-0003-0666-1240</orcidid><orcidid>https://orcid.org/0000-0002-2706-7411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-06, Vol.630 (8018), p.1003-1011
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11208146
source Nexis UK; Nature
subjects 14/28
45
45/29
45/70
631/337/2569
631/535/1258/1259
82
82/16
82/29
82/80
82/83
AAA Domain
Adenosine triphosphatase
Adenosine Triphosphatases - chemistry
Adenosine Triphosphatases - metabolism
Catalytic Domain
Chromosome rearrangements
CRISPR
Cryoelectron Microscopy
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - genetics
DNA - metabolism
DNA structure
DNA Transposable Elements - genetics
Electron microscopy
Enzyme Activation
Humanities and Social Sciences
Microscopy
Models, Molecular
multidisciplinary
Nucleic acids
Nucleotides
Protein Multimerization
Proteins
Science
Science (multidisciplinary)
Substrates
Transcription activation
Transposase
Transposases - chemistry
Transposases - metabolism
Transposition
title Molecular basis for transposase activation by a dedicated AAA+ ATPase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20basis%20for%20transposase%20activation%20by%20a%20dedicated%20AAA+%20ATPase&rft.jtitle=Nature%20(London)&rft.au=de%20la%20G%C3%A1ndara,%20%C3%81lvaro&rft.date=2024-06-27&rft.volume=630&rft.issue=8018&rft.spage=1003&rft.epage=1011&rft.pages=1003-1011&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07550-6&rft_dat=%3Cproquest_pubme%3E3072801376%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3906-a405de9121e75d0214de75744685f54098cd0fa914fa0bfc0b1184b8e3f6ce33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3074815546&rft_id=info:pmid/38926614&rfr_iscdi=true