Loading…
Capture and Detection of Aerosolized Fentanyl in a Suspended Electrochemical Cell
Fentanyl is an extremely potent opioid that is commonly laced into other drugs. Fentanyl poses a danger to users but also to responders or bystanders who may unknowingly ingest a lethal dose (∼2 mg) of fentanyl from aerosolized powder or vapor. Electrochemistry offers a small, simple, and affordable...
Saved in:
Published in: | Analytical chemistry (Washington) 2024-07, Vol.96 (26), p.10648-10653 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a390t-af31e1f7932bf7775f964b00b50f9fc28a1e8b067cd0c03b7894ea6f256d60b23 |
container_end_page | 10653 |
container_issue | 26 |
container_start_page | 10648 |
container_title | Analytical chemistry (Washington) |
container_volume | 96 |
creator | Vannoy, Kathryn J. Krushinski, Lynn E. Dick, Jeffrey E. |
description | Fentanyl is an extremely potent opioid that is commonly laced into other drugs. Fentanyl poses a danger to users but also to responders or bystanders who may unknowingly ingest a lethal dose (∼2 mg) of fentanyl from aerosolized powder or vapor. Electrochemistry offers a small, simple, and affordable platform for the direct detection of illicit substances; however, it is largely limited to solution-phase measurements. Here, we demonstrate the hands-free capture and electroanalyzation of aerosols containing fentanyl. A novel electrochemical cell is constructed by a microwire (cylindrical working electrode) traversing an ionic liquid film that is suspended within a conductive loop (reference/counter electrode). We provide a quantitative finite element simulation of the resulting electrochemical system. The suspended film maintains a high-surface area:volume, allowing the electrochemical cell to act as an effective aerosol collector. The low vapor pressure (negligible evaporation) of ionic liquid makes it a robust candidate for in-field applications, and the use of a hydrophobic ionic liquid allows for the extraction of fentanyl from solids and sprayed aqueous aerosols. |
doi_str_mv | 10.1021/acs.analchem.4c01321 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11223095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076053109</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-af31e1f7932bf7775f964b00b50f9fc28a1e8b067cd0c03b7894ea6f256d60b23</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYNY7Lb6DUQCvvRltvcmM5nMk5TtH4WCiPocMpnETskmazJTqJ_erLtd1Ad9CiS_c3LuPYS8RlgiMDzXJi910N7c2fWyNoCc4TOywIZBJaRkz8kCAHjFWoBjcpLzPQAioHhBjrmUnagbsSCfVnozzclSHQZ6aSdrpjEGGh29sCnm6McfdqDXNkw6PHo6Bqrp5zlvbBjK_ZUvfIrbCKPRnq6s9y_JkdM-21f785R8vb76snpf3X68-bC6uK0072CqtONo0bUdZ71r27ZxJVEP0DfgOmeY1GhlD6I1AxjgfSu72mrhWCMGAT3jp-Tdzncz92s7mBIxaa82aVzr9KiiHtWfL2G8U9_ig0JkjEPXFIezvUOK32ebJ7Uesykj6GDjnBXHhgsh6677PwotSKiBy4K-_Qu9j3MqRf2iBDQcYWtY7yhTtpyTdYfgCGrbryr9qqd-1b7fInvz-9AH0VOhBYAdsJUfPv6n50-EHLRZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076053109</pqid></control><display><type>article</type><title>Capture and Detection of Aerosolized Fentanyl in a Suspended Electrochemical Cell</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Vannoy, Kathryn J. ; Krushinski, Lynn E. ; Dick, Jeffrey E.</creator><creatorcontrib>Vannoy, Kathryn J. ; Krushinski, Lynn E. ; Dick, Jeffrey E.</creatorcontrib><description>Fentanyl is an extremely potent opioid that is commonly laced into other drugs. Fentanyl poses a danger to users but also to responders or bystanders who may unknowingly ingest a lethal dose (∼2 mg) of fentanyl from aerosolized powder or vapor. Electrochemistry offers a small, simple, and affordable platform for the direct detection of illicit substances; however, it is largely limited to solution-phase measurements. Here, we demonstrate the hands-free capture and electroanalyzation of aerosols containing fentanyl. A novel electrochemical cell is constructed by a microwire (cylindrical working electrode) traversing an ionic liquid film that is suspended within a conductive loop (reference/counter electrode). We provide a quantitative finite element simulation of the resulting electrochemical system. The suspended film maintains a high-surface area:volume, allowing the electrochemical cell to act as an effective aerosol collector. The low vapor pressure (negligible evaporation) of ionic liquid makes it a robust candidate for in-field applications, and the use of a hydrophobic ionic liquid allows for the extraction of fentanyl from solids and sprayed aqueous aerosols.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.4c01321</identifier><identifier>PMID: 38896456</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aerosols ; Aerosols - analysis ; Aerosols - chemistry ; Analgesics, Opioid - analysis ; analytical chemistry ; Effectiveness ; Electrochemical cells ; Electrochemical Techniques ; Electrochemistry ; Electrodes ; Evaporation ; Fentanyl ; Fentanyl - analysis ; finite element analysis ; Hydrophobicity ; Ionic liquids ; Ionic Liquids - chemistry ; Lethal dose ; Mathematical models ; Phase measurement ; Vapor pressure ; Vapors</subject><ispartof>Analytical chemistry (Washington), 2024-07, Vol.96 (26), p.10648-10653</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jul 2, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a390t-af31e1f7932bf7775f964b00b50f9fc28a1e8b067cd0c03b7894ea6f256d60b23</cites><orcidid>0000-0003-2896-4605 ; 0000-0002-5723-9755 ; 0000-0002-4538-9705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38896456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vannoy, Kathryn J.</creatorcontrib><creatorcontrib>Krushinski, Lynn E.</creatorcontrib><creatorcontrib>Dick, Jeffrey E.</creatorcontrib><title>Capture and Detection of Aerosolized Fentanyl in a Suspended Electrochemical Cell</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Fentanyl is an extremely potent opioid that is commonly laced into other drugs. Fentanyl poses a danger to users but also to responders or bystanders who may unknowingly ingest a lethal dose (∼2 mg) of fentanyl from aerosolized powder or vapor. Electrochemistry offers a small, simple, and affordable platform for the direct detection of illicit substances; however, it is largely limited to solution-phase measurements. Here, we demonstrate the hands-free capture and electroanalyzation of aerosols containing fentanyl. A novel electrochemical cell is constructed by a microwire (cylindrical working electrode) traversing an ionic liquid film that is suspended within a conductive loop (reference/counter electrode). We provide a quantitative finite element simulation of the resulting electrochemical system. The suspended film maintains a high-surface area:volume, allowing the electrochemical cell to act as an effective aerosol collector. The low vapor pressure (negligible evaporation) of ionic liquid makes it a robust candidate for in-field applications, and the use of a hydrophobic ionic liquid allows for the extraction of fentanyl from solids and sprayed aqueous aerosols.</description><subject>Aerosols</subject><subject>Aerosols - analysis</subject><subject>Aerosols - chemistry</subject><subject>Analgesics, Opioid - analysis</subject><subject>analytical chemistry</subject><subject>Effectiveness</subject><subject>Electrochemical cells</subject><subject>Electrochemical Techniques</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Evaporation</subject><subject>Fentanyl</subject><subject>Fentanyl - analysis</subject><subject>finite element analysis</subject><subject>Hydrophobicity</subject><subject>Ionic liquids</subject><subject>Ionic Liquids - chemistry</subject><subject>Lethal dose</subject><subject>Mathematical models</subject><subject>Phase measurement</subject><subject>Vapor pressure</subject><subject>Vapors</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkV9rFDEUxYNY7Lb6DUQCvvRltvcmM5nMk5TtH4WCiPocMpnETskmazJTqJ_erLtd1Ad9CiS_c3LuPYS8RlgiMDzXJi910N7c2fWyNoCc4TOywIZBJaRkz8kCAHjFWoBjcpLzPQAioHhBjrmUnagbsSCfVnozzclSHQZ6aSdrpjEGGh29sCnm6McfdqDXNkw6PHo6Bqrp5zlvbBjK_ZUvfIrbCKPRnq6s9y_JkdM-21f785R8vb76snpf3X68-bC6uK0072CqtONo0bUdZ71r27ZxJVEP0DfgOmeY1GhlD6I1AxjgfSu72mrhWCMGAT3jp-Tdzncz92s7mBIxaa82aVzr9KiiHtWfL2G8U9_ig0JkjEPXFIezvUOK32ebJ7Uesykj6GDjnBXHhgsh6677PwotSKiBy4K-_Qu9j3MqRf2iBDQcYWtY7yhTtpyTdYfgCGrbryr9qqd-1b7fInvz-9AH0VOhBYAdsJUfPv6n50-EHLRZ</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Vannoy, Kathryn J.</creator><creator>Krushinski, Lynn E.</creator><creator>Dick, Jeffrey E.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2896-4605</orcidid><orcidid>https://orcid.org/0000-0002-5723-9755</orcidid><orcidid>https://orcid.org/0000-0002-4538-9705</orcidid></search><sort><creationdate>20240702</creationdate><title>Capture and Detection of Aerosolized Fentanyl in a Suspended Electrochemical Cell</title><author>Vannoy, Kathryn J. ; Krushinski, Lynn E. ; Dick, Jeffrey E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-af31e1f7932bf7775f964b00b50f9fc28a1e8b067cd0c03b7894ea6f256d60b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerosols</topic><topic>Aerosols - analysis</topic><topic>Aerosols - chemistry</topic><topic>Analgesics, Opioid - analysis</topic><topic>analytical chemistry</topic><topic>Effectiveness</topic><topic>Electrochemical cells</topic><topic>Electrochemical Techniques</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Evaporation</topic><topic>Fentanyl</topic><topic>Fentanyl - analysis</topic><topic>finite element analysis</topic><topic>Hydrophobicity</topic><topic>Ionic liquids</topic><topic>Ionic Liquids - chemistry</topic><topic>Lethal dose</topic><topic>Mathematical models</topic><topic>Phase measurement</topic><topic>Vapor pressure</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vannoy, Kathryn J.</creatorcontrib><creatorcontrib>Krushinski, Lynn E.</creatorcontrib><creatorcontrib>Dick, Jeffrey E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vannoy, Kathryn J.</au><au>Krushinski, Lynn E.</au><au>Dick, Jeffrey E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capture and Detection of Aerosolized Fentanyl in a Suspended Electrochemical Cell</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2024-07-02</date><risdate>2024</risdate><volume>96</volume><issue>26</issue><spage>10648</spage><epage>10653</epage><pages>10648-10653</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Fentanyl is an extremely potent opioid that is commonly laced into other drugs. Fentanyl poses a danger to users but also to responders or bystanders who may unknowingly ingest a lethal dose (∼2 mg) of fentanyl from aerosolized powder or vapor. Electrochemistry offers a small, simple, and affordable platform for the direct detection of illicit substances; however, it is largely limited to solution-phase measurements. Here, we demonstrate the hands-free capture and electroanalyzation of aerosols containing fentanyl. A novel electrochemical cell is constructed by a microwire (cylindrical working electrode) traversing an ionic liquid film that is suspended within a conductive loop (reference/counter electrode). We provide a quantitative finite element simulation of the resulting electrochemical system. The suspended film maintains a high-surface area:volume, allowing the electrochemical cell to act as an effective aerosol collector. The low vapor pressure (negligible evaporation) of ionic liquid makes it a robust candidate for in-field applications, and the use of a hydrophobic ionic liquid allows for the extraction of fentanyl from solids and sprayed aqueous aerosols.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38896456</pmid><doi>10.1021/acs.analchem.4c01321</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2896-4605</orcidid><orcidid>https://orcid.org/0000-0002-5723-9755</orcidid><orcidid>https://orcid.org/0000-0002-4538-9705</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2024-07, Vol.96 (26), p.10648-10653 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11223095 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Aerosols Aerosols - analysis Aerosols - chemistry Analgesics, Opioid - analysis analytical chemistry Effectiveness Electrochemical cells Electrochemical Techniques Electrochemistry Electrodes Evaporation Fentanyl Fentanyl - analysis finite element analysis Hydrophobicity Ionic liquids Ionic Liquids - chemistry Lethal dose Mathematical models Phase measurement Vapor pressure Vapors |
title | Capture and Detection of Aerosolized Fentanyl in a Suspended Electrochemical Cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capture%20and%20Detection%20of%20Aerosolized%20Fentanyl%20in%20a%20Suspended%20Electrochemical%20Cell&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Vannoy,%20Kathryn%20J.&rft.date=2024-07-02&rft.volume=96&rft.issue=26&rft.spage=10648&rft.epage=10653&rft.pages=10648-10653&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.4c01321&rft_dat=%3Cproquest_pubme%3E3076053109%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a390t-af31e1f7932bf7775f964b00b50f9fc28a1e8b067cd0c03b7894ea6f256d60b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076053109&rft_id=info:pmid/38896456&rfr_iscdi=true |