Loading…

Diagnostic performance of the Japanese Narrow-band imaging expert team classification system using dual focus magnification in real-time Vietnamese setting

The JNET classification, combined with magnified narrowband imaging (NBI), is essential for predicting the histology of colorectal polyps and guiding personalized treatment strategies. Despite its recognized utility, the diagnostic efficacy of JNET classification using NBI with dual focus (DF) magni...

Full description

Saved in:
Bibliographic Details
Published in:Medicine (Baltimore) 2024-07, Vol.103 (27), p.e38752
Main Authors: Le, Nhan Quang, Huynh, Tien Manh, Vo, Diem Thi Ngoc, Le, Huy Minh, Tran, Truc Thanh Le, Tran, Vy Thao Ly, Dang, Luan Minh, Le, Nghia Quang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The JNET classification, combined with magnified narrowband imaging (NBI), is essential for predicting the histology of colorectal polyps and guiding personalized treatment strategies. Despite its recognized utility, the diagnostic efficacy of JNET classification using NBI with dual focus (DF) magnification requires exploration in the Vietnamese context. This study aimed to investigate the diagnostic performance of the JNET classification with the NBI-DF mode in predicting the histology of colorectal polyps in Vietnam. A cross-sectional study was conducted at the University Medical Center in Ho Chi Minh City, Vietnam. During real-time endoscopy, endoscopists evaluated the lesion characteristics and recorded optical diagnoses using the dual focus mode magnification according to the JNET classification. En bloc lesion resection (endoscopic or surgical) provided the final pathology, serving as the reference standard for optical diagnoses. A total of 739 patients with 1353 lesions were recruited between October 2021 and March 2023. The overall concordance with the JNET classification was 86.9%. Specificities and positive predictive values for JNET types were: type 1 (95.7%, 88.3%); type 2A (81.4%, 90%); type 2B (96.6%, 54.7%); and type 3 (99.9%, 93.3%). The sensitivity and negative predictive value for differentiating neoplastic from non-neoplastic lesions were 97.8% and 88.3%, respectively. However, the sensitivity for distinguishing malignant from benign neoplasia was lower at 64.1%, despite a specificity of 95.9%. Notably, the specificity and positive predictive value for identifying deep submucosal cancer were high at 99.8% and 93.3%. In Vietnam, applying the JNET classification with NBI-DF demonstrates significant value in predicting the histology of colorectal polyps. This classification guides treatment decisions and prevents unnecessary surgeries.
ISSN:0025-7974
1536-5964
1536-5964
DOI:10.1097/MD.0000000000038752