Loading…
Functional data analysis-based yield modeling in year-round crop cultivation
Crop yield prediction is essential for effective agricultural management. We introduce a methodology for modeling the relationship between environmental parameters and crop yield in longitudinal crop cultivation, exemplified by strawberry and tomato production based on year-round cultivation. Employ...
Saved in:
Published in: | Horticulture research 2024-07, Vol.11 (7) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c307t-6eed5cb407593754801fecd879c6e3d787ad946cb7924a0e7be6f095beaaeaae3 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Horticulture research |
container_volume | 11 |
creator | Matsui, Hidetoshi Mochida, Keiichi |
description | Crop yield prediction is essential for effective agricultural management. We introduce a methodology for modeling the relationship between environmental parameters and crop yield in longitudinal crop cultivation, exemplified by strawberry and tomato production based on year-round cultivation. Employing functional data analysis (FDA), we developed a model to assess the impact of these factors on crop yield, particularly in the face of environmental fluctuation. Specifically, we demonstrated that a varying-coefficient functional regression model (VCFRM) is utilized to analyze time-series data, enabling to visualize seasonal shifts and the dynamic interplay between environmental conditions such as solar radiation and temperature and crop yield. The interpretability of our FDA-based model yields insights for optimizing growth parameters, thereby augmenting resource efficiency and sustainability. Our results demonstrate the feasibility of VCFRM-based yield modeling, offering strategies for stable, efficient crop production, pivotal in addressing the challenges of climate adaptability in plant factory-based horticulture. |
doi_str_mv | 10.1093/hr/uhae144 |
format | article |
fullrecord | <record><control><sourceid>pubmedcentral_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11234900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_11234900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-6eed5cb407593754801fecd879c6e3d787ad946cb7924a0e7be6f095beaaeaae3</originalsourceid><addsrcrecordid>eNpVkFFLwzAUhYMobsy9-AvyLNQlTdo0TyLDqVDwRZ_DbXK7Rrp2JO2g_96NDVG4cA4czgf3EHLP2SNnWqyasBobQC7lFZmnLEsTlar8-o-fkWWM34wxnslUZOqWzEShiyLnck7KzdjZwfcdtNTBABSOboo-JhVEdHTy2Dq66x22vttS39EJISShHztHbej31I7t4A9wYtyRmxraiMuLLsjX5uVz_ZaUH6_v6-cysYKpIckRXWYryVSmhcpkwXiN1hVK2xyFU4UCp2VuK6VTCQxVhXnNdFYhwOnEgjydufux2qGz2A0BWrMPfgdhMj148z_pfGO2_cFwngqpGTsSHs6E4wsxBqx_y5yZ066mCeayq_gBOpVtog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Functional data analysis-based yield modeling in year-round crop cultivation</title><source>Open Access: PubMed Central</source><source>Oxford Academic Journals (Open Access)</source><creator>Matsui, Hidetoshi ; Mochida, Keiichi</creator><creatorcontrib>Matsui, Hidetoshi ; Mochida, Keiichi</creatorcontrib><description>Crop yield prediction is essential for effective agricultural management. We introduce a methodology for modeling the relationship between environmental parameters and crop yield in longitudinal crop cultivation, exemplified by strawberry and tomato production based on year-round cultivation. Employing functional data analysis (FDA), we developed a model to assess the impact of these factors on crop yield, particularly in the face of environmental fluctuation. Specifically, we demonstrated that a varying-coefficient functional regression model (VCFRM) is utilized to analyze time-series data, enabling to visualize seasonal shifts and the dynamic interplay between environmental conditions such as solar radiation and temperature and crop yield. The interpretability of our FDA-based model yields insights for optimizing growth parameters, thereby augmenting resource efficiency and sustainability. Our results demonstrate the feasibility of VCFRM-based yield modeling, offering strategies for stable, efficient crop production, pivotal in addressing the challenges of climate adaptability in plant factory-based horticulture.</description><identifier>ISSN: 2052-7276</identifier><identifier>ISSN: 2662-6810</identifier><identifier>EISSN: 2052-7276</identifier><identifier>DOI: 10.1093/hr/uhae144</identifier><identifier>PMID: 38988614</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Method</subject><ispartof>Horticulture research, 2024-07, Vol.11 (7)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nanjing Agricultural University. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-6eed5cb407593754801fecd879c6e3d787ad946cb7924a0e7be6f095beaaeaae3</cites><orcidid>0000-0002-6286-5072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234900/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234900/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Matsui, Hidetoshi</creatorcontrib><creatorcontrib>Mochida, Keiichi</creatorcontrib><title>Functional data analysis-based yield modeling in year-round crop cultivation</title><title>Horticulture research</title><description>Crop yield prediction is essential for effective agricultural management. We introduce a methodology for modeling the relationship between environmental parameters and crop yield in longitudinal crop cultivation, exemplified by strawberry and tomato production based on year-round cultivation. Employing functional data analysis (FDA), we developed a model to assess the impact of these factors on crop yield, particularly in the face of environmental fluctuation. Specifically, we demonstrated that a varying-coefficient functional regression model (VCFRM) is utilized to analyze time-series data, enabling to visualize seasonal shifts and the dynamic interplay between environmental conditions such as solar radiation and temperature and crop yield. The interpretability of our FDA-based model yields insights for optimizing growth parameters, thereby augmenting resource efficiency and sustainability. Our results demonstrate the feasibility of VCFRM-based yield modeling, offering strategies for stable, efficient crop production, pivotal in addressing the challenges of climate adaptability in plant factory-based horticulture.</description><subject>Method</subject><issn>2052-7276</issn><issn>2662-6810</issn><issn>2052-7276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkFFLwzAUhYMobsy9-AvyLNQlTdo0TyLDqVDwRZ_DbXK7Rrp2JO2g_96NDVG4cA4czgf3EHLP2SNnWqyasBobQC7lFZmnLEsTlar8-o-fkWWM34wxnslUZOqWzEShiyLnck7KzdjZwfcdtNTBABSOboo-JhVEdHTy2Dq66x22vttS39EJISShHztHbej31I7t4A9wYtyRmxraiMuLLsjX5uVz_ZaUH6_v6-cysYKpIckRXWYryVSmhcpkwXiN1hVK2xyFU4UCp2VuK6VTCQxVhXnNdFYhwOnEgjydufux2qGz2A0BWrMPfgdhMj148z_pfGO2_cFwngqpGTsSHs6E4wsxBqx_y5yZ066mCeayq_gBOpVtog</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Matsui, Hidetoshi</creator><creator>Mochida, Keiichi</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6286-5072</orcidid></search><sort><creationdate>20240701</creationdate><title>Functional data analysis-based yield modeling in year-round crop cultivation</title><author>Matsui, Hidetoshi ; Mochida, Keiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-6eed5cb407593754801fecd879c6e3d787ad946cb7924a0e7be6f095beaaeaae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsui, Hidetoshi</creatorcontrib><creatorcontrib>Mochida, Keiichi</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Horticulture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsui, Hidetoshi</au><au>Mochida, Keiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional data analysis-based yield modeling in year-round crop cultivation</atitle><jtitle>Horticulture research</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>11</volume><issue>7</issue><issn>2052-7276</issn><issn>2662-6810</issn><eissn>2052-7276</eissn><abstract>Crop yield prediction is essential for effective agricultural management. We introduce a methodology for modeling the relationship between environmental parameters and crop yield in longitudinal crop cultivation, exemplified by strawberry and tomato production based on year-round cultivation. Employing functional data analysis (FDA), we developed a model to assess the impact of these factors on crop yield, particularly in the face of environmental fluctuation. Specifically, we demonstrated that a varying-coefficient functional regression model (VCFRM) is utilized to analyze time-series data, enabling to visualize seasonal shifts and the dynamic interplay between environmental conditions such as solar radiation and temperature and crop yield. The interpretability of our FDA-based model yields insights for optimizing growth parameters, thereby augmenting resource efficiency and sustainability. Our results demonstrate the feasibility of VCFRM-based yield modeling, offering strategies for stable, efficient crop production, pivotal in addressing the challenges of climate adaptability in plant factory-based horticulture.</abstract><pub>Oxford University Press</pub><pmid>38988614</pmid><doi>10.1093/hr/uhae144</doi><orcidid>https://orcid.org/0000-0002-6286-5072</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-7276 |
ispartof | Horticulture research, 2024-07, Vol.11 (7) |
issn | 2052-7276 2662-6810 2052-7276 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11234900 |
source | Open Access: PubMed Central; Oxford Academic Journals (Open Access) |
subjects | Method |
title | Functional data analysis-based yield modeling in year-round crop cultivation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20data%20analysis-based%20yield%20modeling%20in%20year-round%20crop%20cultivation&rft.jtitle=Horticulture%20research&rft.au=Matsui,%20Hidetoshi&rft.date=2024-07-01&rft.volume=11&rft.issue=7&rft.issn=2052-7276&rft.eissn=2052-7276&rft_id=info:doi/10.1093/hr/uhae144&rft_dat=%3Cpubmedcentral_cross%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_11234900%3C/pubmedcentral_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-6eed5cb407593754801fecd879c6e3d787ad946cb7924a0e7be6f095beaaeaae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/38988614&rfr_iscdi=true |