Loading…

Current uses and understanding of PET imaging in cardiac sarcoidosis

Sarcoidosis is a systemic disease with unclear etiology characterized by the accumulation of noncaseating, immune granulomas in affected tissues. In cardiac sarcoidosis (CS), white blood cells build up within the heart muscles, causing cardiac abnormalities. Accurate and early diagnosis of CS proves...

Full description

Saved in:
Bibliographic Details
Published in:American journal of nuclear medicine and molecular imaging 2024-01, Vol.14 (3), p.161-174
Main Authors: Madiraju, Alekhya, Bhattaru, Abhijit, Pham, Truongan, Pundyavana, Anish, Rojulpote, Krishna Vamsi, Raynor, William Y, Werner, Thomas J, Alavi, Abass
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sarcoidosis is a systemic disease with unclear etiology characterized by the accumulation of noncaseating, immune granulomas in affected tissues. In cardiac sarcoidosis (CS), white blood cells build up within the heart muscles, causing cardiac abnormalities. Accurate and early diagnosis of CS proves challenging. However, usage of positron emission tomography (PET) imaging, namely F-FDG-PET, has proven successful in diagnosing inflammatory cardiomyopathy. This review seeks to examine the role of PET in managing ventricular tachycardia in cardiac sarcoidosis. PET, in conjunction with cardiac magnetic resonance imaging (CMR) is also endorsed as the premier method for diagnosis and management of arrhythmias associated with CS by The Heart Rhythm Society. After a CS diagnosis, risk stratification of ventricular arrhythmias is a necessity given the potential for sudden cardiac death. F-FDG-PET has been successful in monitoring disease advancement and treatment responses in CS patients. Early stages of CS are often treated with immunosuppression drugs if there are additional signs of VT. Currently, corticosteroid and anti-arrhythmia compounds: methotrexate, cyclophosphamide, infliximab, amiodarone, and azathioprine are used to suppress inflammation. F-FDG-PET has certainly proven to be an incredibly useful and accurate diagnostic tool of CS. While late gadolinium enhancement by CMR is efficient in detecting myocardial necrosis and/or advanced fibrosis scarring, F-FDG portrays the increased uptake level of glucose metabolism. In combination PET/MRI has proven to be more successful in improving the efficacy of both scans, addressing their drawbacks, and highlighting their advantages. Managing CS patients is highly involved in detecting inflammatory regions of the heart. Early recognition prevents cardiac abnormality, mainly VT and VF in CS patients, and extends lifespan.
ISSN:2160-8407
2160-8407
DOI:10.62347/NANX3492