Loading…
Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells
Crosstalk between metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to disease. Here, we investigated whether maintenance of circadian rhythms depends on specific metabolic pathways, particularly...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2024-07, Vol.121 (30), p.e2319782121 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2211-141d7ec32e8ae0cabcf490fdafa5a331b1bf5a6ec33cfcd593f061b22309af1e3 |
container_end_page | |
container_issue | 30 |
container_start_page | e2319782121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Iascone, Daniel Maxim Zhang, Xue Brafford, Patricia Mesaros, Clementina Sela, Yogev Hofbauer, Samuel Zhang, Shirley L Madhwal, Sukanya Cook, Kieona Pivarshev, Pavel Stanger, Ben Z Anderson, Stewart Dang, Chi V Sehgal, Amita |
description | Crosstalk between metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to disease. Here, we investigated whether maintenance of circadian rhythms depends on specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to signal from a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function across a series of pancreatic adenocarcinoma cell lines. Metabolic profiling of congenic tumor cell clones revealed substantial diversity among these lines that we used to identify clones to generate circadian reporter lines. We observed diverse circadian profiles among these lines that varied with their metabolic phenotype: The most hypometabolic line [exhibiting low levels of oxidative phosphorylation (OxPhos) and glycolysis] had the strongest rhythms, while the most hypermetabolic line had the weakest rhythms. Pharmacological enhancement of OxPhos decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, inhibition of OxPhos enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells. |
doi_str_mv | 10.1073/pnas.2319782121 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11287162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081288908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2211-141d7ec32e8ae0cabcf490fdafa5a331b1bf5a6ec33cfcd593f061b22309af1e3</originalsourceid><addsrcrecordid>eNpdkUtv1TAQRi0EopfCmh2yxIZN2hk7D2eFUAUUqRIbWFsTxyauEjvYCej-e3zVUh4ra-Qzn-boY-wlwgVCJy_XQPlCSOw7JVDgI3ZA6LFq6x4eswOA6CpVi_qMPcv5FgD6RsFTdiZ7ANW29YGZ6-Nq02I3GuLsDc8bbZb7zCnnaHwZRv7TbxM3PhkaPQWepuM2LXz0Oe3r5mPgPvAl7tlyCiOf9qVAhoKxiRs7z_k5e-JozvbF_XvOvn54_-Xqurr5_PHT1bubygiBWGGNY2eNFFaRBUODcUXDjeSoISlxwME11BZCGmfGppcOWhyEkNCTQyvP2du73HUfFjsaG7ZEs16TXygddSSv__0JftLf4g-NKFSHrSgJb-4TUvy-27zpxeeTAwVbBLUEVVDVgyro6__Q27inUPxOVIOixaYr1OUdZVLMOVn3cA2CPjWoTw3qPw2WjVd_SzzwvyuTvwCfmZpL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085126157</pqid></control><display><type>article</type><title>Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells</title><source>PubMed Central</source><creator>Iascone, Daniel Maxim ; Zhang, Xue ; Brafford, Patricia ; Mesaros, Clementina ; Sela, Yogev ; Hofbauer, Samuel ; Zhang, Shirley L ; Madhwal, Sukanya ; Cook, Kieona ; Pivarshev, Pavel ; Stanger, Ben Z ; Anderson, Stewart ; Dang, Chi V ; Sehgal, Amita</creator><creatorcontrib>Iascone, Daniel Maxim ; Zhang, Xue ; Brafford, Patricia ; Mesaros, Clementina ; Sela, Yogev ; Hofbauer, Samuel ; Zhang, Shirley L ; Madhwal, Sukanya ; Cook, Kieona ; Pivarshev, Pavel ; Stanger, Ben Z ; Anderson, Stewart ; Dang, Chi V ; Sehgal, Amita</creatorcontrib><description>Crosstalk between metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to disease. Here, we investigated whether maintenance of circadian rhythms depends on specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to signal from a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function across a series of pancreatic adenocarcinoma cell lines. Metabolic profiling of congenic tumor cell clones revealed substantial diversity among these lines that we used to identify clones to generate circadian reporter lines. We observed diverse circadian profiles among these lines that varied with their metabolic phenotype: The most hypometabolic line [exhibiting low levels of oxidative phosphorylation (OxPhos) and glycolysis] had the strongest rhythms, while the most hypermetabolic line had the weakest rhythms. Pharmacological enhancement of OxPhos decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, inhibition of OxPhos enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2319782121</identifier><identifier>PMID: 39008664</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenocarcinoma ; Adenosine Triphosphate - metabolism ; Animals ; Biological Sciences ; Cancer ; Cell interactions ; Cell Line, Tumor ; Circadian rhythm ; Circadian Rhythm - physiology ; Circadian rhythms ; Clock gene ; Cloning ; Crosstalk ; Cycles ; Disruption ; Fibroblasts - metabolism ; Glycolysis ; Heterogeneity ; Humans ; Melanoma ; Metabolic pathways ; Metabolism ; Mice ; Oxidative Phosphorylation ; Pancreatic Neoplasms - genetics ; Pancreatic Neoplasms - metabolism ; Pancreatic Neoplasms - pathology ; Phenotypes ; Phosphorylation ; Tumor cell lines ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-07, Vol.121 (30), p.e2319782121</ispartof><rights>Copyright National Academy of Sciences Jul 23, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2211-141d7ec32e8ae0cabcf490fdafa5a331b1bf5a6ec33cfcd593f061b22309af1e3</cites><orcidid>0000-0002-8629-7639 ; 0000-0001-7354-9641 ; 0000-0003-0410-4037 ; 0000-0002-4031-2522 ; 0000-0002-6672-2044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287162/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287162/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39008664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iascone, Daniel Maxim</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Brafford, Patricia</creatorcontrib><creatorcontrib>Mesaros, Clementina</creatorcontrib><creatorcontrib>Sela, Yogev</creatorcontrib><creatorcontrib>Hofbauer, Samuel</creatorcontrib><creatorcontrib>Zhang, Shirley L</creatorcontrib><creatorcontrib>Madhwal, Sukanya</creatorcontrib><creatorcontrib>Cook, Kieona</creatorcontrib><creatorcontrib>Pivarshev, Pavel</creatorcontrib><creatorcontrib>Stanger, Ben Z</creatorcontrib><creatorcontrib>Anderson, Stewart</creatorcontrib><creatorcontrib>Dang, Chi V</creatorcontrib><creatorcontrib>Sehgal, Amita</creatorcontrib><title>Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Crosstalk between metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to disease. Here, we investigated whether maintenance of circadian rhythms depends on specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to signal from a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function across a series of pancreatic adenocarcinoma cell lines. Metabolic profiling of congenic tumor cell clones revealed substantial diversity among these lines that we used to identify clones to generate circadian reporter lines. We observed diverse circadian profiles among these lines that varied with their metabolic phenotype: The most hypometabolic line [exhibiting low levels of oxidative phosphorylation (OxPhos) and glycolysis] had the strongest rhythms, while the most hypermetabolic line had the weakest rhythms. Pharmacological enhancement of OxPhos decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, inhibition of OxPhos enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.</description><subject>Adenocarcinoma</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Cell interactions</subject><subject>Cell Line, Tumor</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - physiology</subject><subject>Circadian rhythms</subject><subject>Clock gene</subject><subject>Cloning</subject><subject>Crosstalk</subject><subject>Cycles</subject><subject>Disruption</subject><subject>Fibroblasts - metabolism</subject><subject>Glycolysis</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Melanoma</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Oxidative Phosphorylation</subject><subject>Pancreatic Neoplasms - genetics</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUtv1TAQRi0EopfCmh2yxIZN2hk7D2eFUAUUqRIbWFsTxyauEjvYCej-e3zVUh4ra-Qzn-boY-wlwgVCJy_XQPlCSOw7JVDgI3ZA6LFq6x4eswOA6CpVi_qMPcv5FgD6RsFTdiZ7ANW29YGZ6-Nq02I3GuLsDc8bbZb7zCnnaHwZRv7TbxM3PhkaPQWepuM2LXz0Oe3r5mPgPvAl7tlyCiOf9qVAhoKxiRs7z_k5e-JozvbF_XvOvn54_-Xqurr5_PHT1bubygiBWGGNY2eNFFaRBUODcUXDjeSoISlxwME11BZCGmfGppcOWhyEkNCTQyvP2du73HUfFjsaG7ZEs16TXygddSSv__0JftLf4g-NKFSHrSgJb-4TUvy-27zpxeeTAwVbBLUEVVDVgyro6__Q27inUPxOVIOixaYr1OUdZVLMOVn3cA2CPjWoTw3qPw2WjVd_SzzwvyuTvwCfmZpL</recordid><startdate>20240723</startdate><enddate>20240723</enddate><creator>Iascone, Daniel Maxim</creator><creator>Zhang, Xue</creator><creator>Brafford, Patricia</creator><creator>Mesaros, Clementina</creator><creator>Sela, Yogev</creator><creator>Hofbauer, Samuel</creator><creator>Zhang, Shirley L</creator><creator>Madhwal, Sukanya</creator><creator>Cook, Kieona</creator><creator>Pivarshev, Pavel</creator><creator>Stanger, Ben Z</creator><creator>Anderson, Stewart</creator><creator>Dang, Chi V</creator><creator>Sehgal, Amita</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8629-7639</orcidid><orcidid>https://orcid.org/0000-0001-7354-9641</orcidid><orcidid>https://orcid.org/0000-0003-0410-4037</orcidid><orcidid>https://orcid.org/0000-0002-4031-2522</orcidid><orcidid>https://orcid.org/0000-0002-6672-2044</orcidid></search><sort><creationdate>20240723</creationdate><title>Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells</title><author>Iascone, Daniel Maxim ; Zhang, Xue ; Brafford, Patricia ; Mesaros, Clementina ; Sela, Yogev ; Hofbauer, Samuel ; Zhang, Shirley L ; Madhwal, Sukanya ; Cook, Kieona ; Pivarshev, Pavel ; Stanger, Ben Z ; Anderson, Stewart ; Dang, Chi V ; Sehgal, Amita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2211-141d7ec32e8ae0cabcf490fdafa5a331b1bf5a6ec33cfcd593f061b22309af1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenocarcinoma</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Cell interactions</topic><topic>Cell Line, Tumor</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - physiology</topic><topic>Circadian rhythms</topic><topic>Clock gene</topic><topic>Cloning</topic><topic>Crosstalk</topic><topic>Cycles</topic><topic>Disruption</topic><topic>Fibroblasts - metabolism</topic><topic>Glycolysis</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Melanoma</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Oxidative Phosphorylation</topic><topic>Pancreatic Neoplasms - genetics</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iascone, Daniel Maxim</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Brafford, Patricia</creatorcontrib><creatorcontrib>Mesaros, Clementina</creatorcontrib><creatorcontrib>Sela, Yogev</creatorcontrib><creatorcontrib>Hofbauer, Samuel</creatorcontrib><creatorcontrib>Zhang, Shirley L</creatorcontrib><creatorcontrib>Madhwal, Sukanya</creatorcontrib><creatorcontrib>Cook, Kieona</creatorcontrib><creatorcontrib>Pivarshev, Pavel</creatorcontrib><creatorcontrib>Stanger, Ben Z</creatorcontrib><creatorcontrib>Anderson, Stewart</creatorcontrib><creatorcontrib>Dang, Chi V</creatorcontrib><creatorcontrib>Sehgal, Amita</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iascone, Daniel Maxim</au><au>Zhang, Xue</au><au>Brafford, Patricia</au><au>Mesaros, Clementina</au><au>Sela, Yogev</au><au>Hofbauer, Samuel</au><au>Zhang, Shirley L</au><au>Madhwal, Sukanya</au><au>Cook, Kieona</au><au>Pivarshev, Pavel</au><au>Stanger, Ben Z</au><au>Anderson, Stewart</au><au>Dang, Chi V</au><au>Sehgal, Amita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-07-23</date><risdate>2024</risdate><volume>121</volume><issue>30</issue><spage>e2319782121</spage><pages>e2319782121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Crosstalk between metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to disease. Here, we investigated whether maintenance of circadian rhythms depends on specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to signal from a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function across a series of pancreatic adenocarcinoma cell lines. Metabolic profiling of congenic tumor cell clones revealed substantial diversity among these lines that we used to identify clones to generate circadian reporter lines. We observed diverse circadian profiles among these lines that varied with their metabolic phenotype: The most hypometabolic line [exhibiting low levels of oxidative phosphorylation (OxPhos) and glycolysis] had the strongest rhythms, while the most hypermetabolic line had the weakest rhythms. Pharmacological enhancement of OxPhos decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, inhibition of OxPhos enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>39008664</pmid><doi>10.1073/pnas.2319782121</doi><orcidid>https://orcid.org/0000-0002-8629-7639</orcidid><orcidid>https://orcid.org/0000-0001-7354-9641</orcidid><orcidid>https://orcid.org/0000-0003-0410-4037</orcidid><orcidid>https://orcid.org/0000-0002-4031-2522</orcidid><orcidid>https://orcid.org/0000-0002-6672-2044</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-07, Vol.121 (30), p.e2319782121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11287162 |
source | PubMed Central |
subjects | Adenocarcinoma Adenosine Triphosphate - metabolism Animals Biological Sciences Cancer Cell interactions Cell Line, Tumor Circadian rhythm Circadian Rhythm - physiology Circadian rhythms Clock gene Cloning Crosstalk Cycles Disruption Fibroblasts - metabolism Glycolysis Heterogeneity Humans Melanoma Metabolic pathways Metabolism Mice Oxidative Phosphorylation Pancreatic Neoplasms - genetics Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology Phenotypes Phosphorylation Tumor cell lines Tumors |
title | Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypermetabolic%20state%20is%20associated%20with%20circadian%20rhythm%20disruption%20in%20mouse%20and%20human%20cancer%20cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Iascone,%20Daniel%20Maxim&rft.date=2024-07-23&rft.volume=121&rft.issue=30&rft.spage=e2319782121&rft.pages=e2319782121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2319782121&rft_dat=%3Cproquest_pubme%3E3081288908%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2211-141d7ec32e8ae0cabcf490fdafa5a331b1bf5a6ec33cfcd593f061b22309af1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085126157&rft_id=info:pmid/39008664&rfr_iscdi=true |