Loading…
Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system
The incidence of microorganisms with extended-spectrum beta-lactamase (ESBL) is on the rise, posing a significant public health concern. The current application of machine learning (ML) focuses on predicting bacterial resistance to optimize antibiotic therapy. This study employs ML to forecast the o...
Saved in:
Published in: | Infection and drug resistance 2024-07, Vol.17, p.3225-3240 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-afb8ba9fbec454c0581a2a4b2004be91e10240f45052844016a7ab5acaa1c3a73 |
container_end_page | 3240 |
container_issue | |
container_start_page | 3225 |
container_title | Infection and drug resistance |
container_volume | 17 |
creator | Al-Khlifeh, Enas M Alkhazi, Ibrahim S Alrowaily, Majed Abdullah Alghamdi, Mansoor Alrashidi, Malek Tarawneh, Ahmad S Alkhawaldeh, Ibraheem M Hassanat, Ahmad B |
description | The incidence of microorganisms with extended-spectrum beta-lactamase (ESBL) is on the rise, posing a significant public health concern. The current application of machine learning (ML) focuses on predicting bacterial resistance to optimize antibiotic therapy. This study employs ML to forecast the occurrence of bacteria that generate ESBL and demonstrate resistance to multiple antibiotics (MDR).
Six popular ML algorithms were initially trained on antibiotic resistance test patient reports (n = 489) collected from Al-Hussein/Salt Hospital in Jordan. Trained outcome models predict ESBL and multidrug resistance profiles based on microbiological and patients' clinical data. The results were utilized to select the optimal ML method to predict ESBL's most associated features.
(
, 82%) was the most commonly identified microbe generating ESBL, displaying multidrug resistance. Urinary tract infections (UTIs) constituted the most frequently observed clinical diagnosis (68.7%). Classification and Regression Trees (CART) and Random Forest (RF) classifiers emerged as the most effective algorithms. The relevant features associated with the emergence of ESBL include age and different classes of antibiotics, including cefuroxime, ceftazidime, cefepime, trimethoprim/ sulfamethoxazole, ciprofloxacin, and gentamicin. Fosfomycin nitrofurantoin, piperacillin/tazobactam, along with amikacin, meropenem, and imipenem, had a pronounced inverse relationship with the ESBL class.
CART and RF-based ML algorithms can be employed to predict the most important features of ESBL. The significance of monitoring trends in ESBL infections is emphasized to facilitate the administration of appropriate antibiotic therapy. |
doi_str_mv | 10.2147/IDR.S469877 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11287471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811477506</galeid><sourcerecordid>A811477506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-afb8ba9fbec454c0581a2a4b2004be91e10240f45052844016a7ab5acaa1c3a73</originalsourceid><addsrcrecordid>eNptktFqFDEUhgdRbKm98l4CgggyazKTmWSupNaqla1Ka6_DmcyZ3chMsiYZtXc-Sp-lT2aWXcsumFzkcPL9P5zkz7KnjM4KxsXr83eXsyteN1KIB9khY0LmdSPKhzv1QXYcwneaVtnUXBSPs4OyoZLxSh5mf85-R7QdduRqhTr6aby7bTFCPgcdYYSA5G2q0BsgYDtyMQ3RdH5akEsMJkSwGomx5JPzHVgCHslXj51Jko5cB2MXBMhn_EUuQC-NxXyO4G1q392GmxBxfJI96mEIeLw9j7Lr92ffTj_m8y8fzk9P5rkuaxlz6FvZQtO3qHnFNa0kgwJ4W1DKW2wYMlpw2vOKVoXknLIaBLQVaACmSxDlUfZm47ua2hE7jTZ6GNTKmxH8jXJg1P6NNUu1cD8VY4UUXLDk8HLr4N2PCUNUowkahwEsuimoksq6lIWs64Q-36ALGFAZ27tkqde4OpEs_Zuo6Jqa_YdKu8PRaGexN6m_J3ixI1giDHEZ3DBF42zYB19tQO1dCB77-zkZVevcqJQbtc1Nop_tPs09-y8l5V_ujL9D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086382866</pqid></control><display><type>article</type><title>Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system</title><source>Taylor & Francis Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Al-Khlifeh, Enas M ; Alkhazi, Ibrahim S ; Alrowaily, Majed Abdullah ; Alghamdi, Mansoor ; Alrashidi, Malek ; Tarawneh, Ahmad S ; Alkhawaldeh, Ibraheem M ; Hassanat, Ahmad B</creator><creatorcontrib>Al-Khlifeh, Enas M ; Alkhazi, Ibrahim S ; Alrowaily, Majed Abdullah ; Alghamdi, Mansoor ; Alrashidi, Malek ; Tarawneh, Ahmad S ; Alkhawaldeh, Ibraheem M ; Hassanat, Ahmad B</creatorcontrib><description>The incidence of microorganisms with extended-spectrum beta-lactamase (ESBL) is on the rise, posing a significant public health concern. The current application of machine learning (ML) focuses on predicting bacterial resistance to optimize antibiotic therapy. This study employs ML to forecast the occurrence of bacteria that generate ESBL and demonstrate resistance to multiple antibiotics (MDR).
Six popular ML algorithms were initially trained on antibiotic resistance test patient reports (n = 489) collected from Al-Hussein/Salt Hospital in Jordan. Trained outcome models predict ESBL and multidrug resistance profiles based on microbiological and patients' clinical data. The results were utilized to select the optimal ML method to predict ESBL's most associated features.
(
, 82%) was the most commonly identified microbe generating ESBL, displaying multidrug resistance. Urinary tract infections (UTIs) constituted the most frequently observed clinical diagnosis (68.7%). Classification and Regression Trees (CART) and Random Forest (RF) classifiers emerged as the most effective algorithms. The relevant features associated with the emergence of ESBL include age and different classes of antibiotics, including cefuroxime, ceftazidime, cefepime, trimethoprim/ sulfamethoxazole, ciprofloxacin, and gentamicin. Fosfomycin nitrofurantoin, piperacillin/tazobactam, along with amikacin, meropenem, and imipenem, had a pronounced inverse relationship with the ESBL class.
CART and RF-based ML algorithms can be employed to predict the most important features of ESBL. The significance of monitoring trends in ESBL infections is emphasized to facilitate the administration of appropriate antibiotic therapy.</description><identifier>ISSN: 1178-6973</identifier><identifier>EISSN: 1178-6973</identifier><identifier>DOI: 10.2147/IDR.S469877</identifier><identifier>PMID: 39081458</identifier><language>eng</language><publisher>New Zealand: Dove Medical Press Limited</publisher><subject>Algorithms ; Antibacterial agents ; Bacteria ; Beta lactamases ; Drug resistance in microorganisms ; Forecasts and trends ; Health aspects ; Machine learning ; Microbiology ; Original Research ; Prognosis ; Public health ; Urinary tract infections</subject><ispartof>Infection and drug resistance, 2024-07, Vol.17, p.3225-3240</ispartof><rights>2024 Al-Khlifeh et al.</rights><rights>COPYRIGHT 2024 Dove Medical Press Limited</rights><rights>2024 Al-Khlifeh et al. 2024 Al-Khlifeh et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c368t-afb8ba9fbec454c0581a2a4b2004be91e10240f45052844016a7ab5acaa1c3a73</cites><orcidid>0009-0000-4601-3796 ; 0000-0001-8460-9240 ; 0000-0002-9991-304X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287471/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287471/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,37012,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39081458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Khlifeh, Enas M</creatorcontrib><creatorcontrib>Alkhazi, Ibrahim S</creatorcontrib><creatorcontrib>Alrowaily, Majed Abdullah</creatorcontrib><creatorcontrib>Alghamdi, Mansoor</creatorcontrib><creatorcontrib>Alrashidi, Malek</creatorcontrib><creatorcontrib>Tarawneh, Ahmad S</creatorcontrib><creatorcontrib>Alkhawaldeh, Ibraheem M</creatorcontrib><creatorcontrib>Hassanat, Ahmad B</creatorcontrib><title>Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system</title><title>Infection and drug resistance</title><addtitle>Infect Drug Resist</addtitle><description>The incidence of microorganisms with extended-spectrum beta-lactamase (ESBL) is on the rise, posing a significant public health concern. The current application of machine learning (ML) focuses on predicting bacterial resistance to optimize antibiotic therapy. This study employs ML to forecast the occurrence of bacteria that generate ESBL and demonstrate resistance to multiple antibiotics (MDR).
Six popular ML algorithms were initially trained on antibiotic resistance test patient reports (n = 489) collected from Al-Hussein/Salt Hospital in Jordan. Trained outcome models predict ESBL and multidrug resistance profiles based on microbiological and patients' clinical data. The results were utilized to select the optimal ML method to predict ESBL's most associated features.
(
, 82%) was the most commonly identified microbe generating ESBL, displaying multidrug resistance. Urinary tract infections (UTIs) constituted the most frequently observed clinical diagnosis (68.7%). Classification and Regression Trees (CART) and Random Forest (RF) classifiers emerged as the most effective algorithms. The relevant features associated with the emergence of ESBL include age and different classes of antibiotics, including cefuroxime, ceftazidime, cefepime, trimethoprim/ sulfamethoxazole, ciprofloxacin, and gentamicin. Fosfomycin nitrofurantoin, piperacillin/tazobactam, along with amikacin, meropenem, and imipenem, had a pronounced inverse relationship with the ESBL class.
CART and RF-based ML algorithms can be employed to predict the most important features of ESBL. The significance of monitoring trends in ESBL infections is emphasized to facilitate the administration of appropriate antibiotic therapy.</description><subject>Algorithms</subject><subject>Antibacterial agents</subject><subject>Bacteria</subject><subject>Beta lactamases</subject><subject>Drug resistance in microorganisms</subject><subject>Forecasts and trends</subject><subject>Health aspects</subject><subject>Machine learning</subject><subject>Microbiology</subject><subject>Original Research</subject><subject>Prognosis</subject><subject>Public health</subject><subject>Urinary tract infections</subject><issn>1178-6973</issn><issn>1178-6973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptktFqFDEUhgdRbKm98l4CgggyazKTmWSupNaqla1Ka6_DmcyZ3chMsiYZtXc-Sp-lT2aWXcsumFzkcPL9P5zkz7KnjM4KxsXr83eXsyteN1KIB9khY0LmdSPKhzv1QXYcwneaVtnUXBSPs4OyoZLxSh5mf85-R7QdduRqhTr6aby7bTFCPgcdYYSA5G2q0BsgYDtyMQ3RdH5akEsMJkSwGomx5JPzHVgCHslXj51Jko5cB2MXBMhn_EUuQC-NxXyO4G1q392GmxBxfJI96mEIeLw9j7Lr92ffTj_m8y8fzk9P5rkuaxlz6FvZQtO3qHnFNa0kgwJ4W1DKW2wYMlpw2vOKVoXknLIaBLQVaACmSxDlUfZm47ua2hE7jTZ6GNTKmxH8jXJg1P6NNUu1cD8VY4UUXLDk8HLr4N2PCUNUowkahwEsuimoksq6lIWs64Q-36ALGFAZ27tkqde4OpEs_Zuo6Jqa_YdKu8PRaGexN6m_J3ixI1giDHEZ3DBF42zYB19tQO1dCB77-zkZVevcqJQbtc1Nop_tPs09-y8l5V_ujL9D</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>Al-Khlifeh, Enas M</creator><creator>Alkhazi, Ibrahim S</creator><creator>Alrowaily, Majed Abdullah</creator><creator>Alghamdi, Mansoor</creator><creator>Alrashidi, Malek</creator><creator>Tarawneh, Ahmad S</creator><creator>Alkhawaldeh, Ibraheem M</creator><creator>Hassanat, Ahmad B</creator><general>Dove Medical Press Limited</general><general>Dove</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0000-4601-3796</orcidid><orcidid>https://orcid.org/0000-0001-8460-9240</orcidid><orcidid>https://orcid.org/0000-0002-9991-304X</orcidid></search><sort><creationdate>20240730</creationdate><title>Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system</title><author>Al-Khlifeh, Enas M ; Alkhazi, Ibrahim S ; Alrowaily, Majed Abdullah ; Alghamdi, Mansoor ; Alrashidi, Malek ; Tarawneh, Ahmad S ; Alkhawaldeh, Ibraheem M ; Hassanat, Ahmad B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-afb8ba9fbec454c0581a2a4b2004be91e10240f45052844016a7ab5acaa1c3a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Antibacterial agents</topic><topic>Bacteria</topic><topic>Beta lactamases</topic><topic>Drug resistance in microorganisms</topic><topic>Forecasts and trends</topic><topic>Health aspects</topic><topic>Machine learning</topic><topic>Microbiology</topic><topic>Original Research</topic><topic>Prognosis</topic><topic>Public health</topic><topic>Urinary tract infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Khlifeh, Enas M</creatorcontrib><creatorcontrib>Alkhazi, Ibrahim S</creatorcontrib><creatorcontrib>Alrowaily, Majed Abdullah</creatorcontrib><creatorcontrib>Alghamdi, Mansoor</creatorcontrib><creatorcontrib>Alrashidi, Malek</creatorcontrib><creatorcontrib>Tarawneh, Ahmad S</creatorcontrib><creatorcontrib>Alkhawaldeh, Ibraheem M</creatorcontrib><creatorcontrib>Hassanat, Ahmad B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Infection and drug resistance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Khlifeh, Enas M</au><au>Alkhazi, Ibrahim S</au><au>Alrowaily, Majed Abdullah</au><au>Alghamdi, Mansoor</au><au>Alrashidi, Malek</au><au>Tarawneh, Ahmad S</au><au>Alkhawaldeh, Ibraheem M</au><au>Hassanat, Ahmad B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system</atitle><jtitle>Infection and drug resistance</jtitle><addtitle>Infect Drug Resist</addtitle><date>2024-07-30</date><risdate>2024</risdate><volume>17</volume><spage>3225</spage><epage>3240</epage><pages>3225-3240</pages><issn>1178-6973</issn><eissn>1178-6973</eissn><abstract>The incidence of microorganisms with extended-spectrum beta-lactamase (ESBL) is on the rise, posing a significant public health concern. The current application of machine learning (ML) focuses on predicting bacterial resistance to optimize antibiotic therapy. This study employs ML to forecast the occurrence of bacteria that generate ESBL and demonstrate resistance to multiple antibiotics (MDR).
Six popular ML algorithms were initially trained on antibiotic resistance test patient reports (n = 489) collected from Al-Hussein/Salt Hospital in Jordan. Trained outcome models predict ESBL and multidrug resistance profiles based on microbiological and patients' clinical data. The results were utilized to select the optimal ML method to predict ESBL's most associated features.
(
, 82%) was the most commonly identified microbe generating ESBL, displaying multidrug resistance. Urinary tract infections (UTIs) constituted the most frequently observed clinical diagnosis (68.7%). Classification and Regression Trees (CART) and Random Forest (RF) classifiers emerged as the most effective algorithms. The relevant features associated with the emergence of ESBL include age and different classes of antibiotics, including cefuroxime, ceftazidime, cefepime, trimethoprim/ sulfamethoxazole, ciprofloxacin, and gentamicin. Fosfomycin nitrofurantoin, piperacillin/tazobactam, along with amikacin, meropenem, and imipenem, had a pronounced inverse relationship with the ESBL class.
CART and RF-based ML algorithms can be employed to predict the most important features of ESBL. The significance of monitoring trends in ESBL infections is emphasized to facilitate the administration of appropriate antibiotic therapy.</abstract><cop>New Zealand</cop><pub>Dove Medical Press Limited</pub><pmid>39081458</pmid><doi>10.2147/IDR.S469877</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0000-4601-3796</orcidid><orcidid>https://orcid.org/0000-0001-8460-9240</orcidid><orcidid>https://orcid.org/0000-0002-9991-304X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1178-6973 |
ispartof | Infection and drug resistance, 2024-07, Vol.17, p.3225-3240 |
issn | 1178-6973 1178-6973 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11287471 |
source | Taylor & Francis Open Access; Publicly Available Content Database; PubMed Central |
subjects | Algorithms Antibacterial agents Bacteria Beta lactamases Drug resistance in microorganisms Forecasts and trends Health aspects Machine learning Microbiology Original Research Prognosis Public health Urinary tract infections |
title | Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Spectrum%C2%A0beta-Lactamase%20Bacteria%20and%20Multidrug%20Resistance%20in%20Jordan%20are%20Predicted%20Using%20a%20New%20Machine-Learning%C2%A0system&rft.jtitle=Infection%20and%20drug%20resistance&rft.au=Al-Khlifeh,%20Enas%20M&rft.date=2024-07-30&rft.volume=17&rft.spage=3225&rft.epage=3240&rft.pages=3225-3240&rft.issn=1178-6973&rft.eissn=1178-6973&rft_id=info:doi/10.2147/IDR.S469877&rft_dat=%3Cgale_pubme%3EA811477506%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-afb8ba9fbec454c0581a2a4b2004be91e10240f45052844016a7ab5acaa1c3a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086382866&rft_id=info:pmid/39081458&rft_galeid=A811477506&rfr_iscdi=true |