Loading…

Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system

The incidence of microorganisms with extended-spectrum beta-lactamase (ESBL) is on the rise, posing a significant public health concern. The current application of machine learning (ML) focuses on predicting bacterial resistance to optimize antibiotic therapy. This study employs ML to forecast the o...

Full description

Saved in:
Bibliographic Details
Published in:Infection and drug resistance 2024-07, Vol.17, p.3225-3240
Main Authors: Al-Khlifeh, Enas M, Alkhazi, Ibrahim S, Alrowaily, Majed Abdullah, Alghamdi, Mansoor, Alrashidi, Malek, Tarawneh, Ahmad S, Alkhawaldeh, Ibraheem M, Hassanat, Ahmad B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c368t-afb8ba9fbec454c0581a2a4b2004be91e10240f45052844016a7ab5acaa1c3a73
container_end_page 3240
container_issue
container_start_page 3225
container_title Infection and drug resistance
container_volume 17
creator Al-Khlifeh, Enas M
Alkhazi, Ibrahim S
Alrowaily, Majed Abdullah
Alghamdi, Mansoor
Alrashidi, Malek
Tarawneh, Ahmad S
Alkhawaldeh, Ibraheem M
Hassanat, Ahmad B
description The incidence of microorganisms with extended-spectrum beta-lactamase (ESBL) is on the rise, posing a significant public health concern. The current application of machine learning (ML) focuses on predicting bacterial resistance to optimize antibiotic therapy. This study employs ML to forecast the occurrence of bacteria that generate ESBL and demonstrate resistance to multiple antibiotics (MDR). Six popular ML algorithms were initially trained on antibiotic resistance test patient reports (n = 489) collected from Al-Hussein/Salt Hospital in Jordan. Trained outcome models predict ESBL and multidrug resistance profiles based on microbiological and patients' clinical data. The results were utilized to select the optimal ML method to predict ESBL's most associated features. ( , 82%) was the most commonly identified microbe generating ESBL, displaying multidrug resistance. Urinary tract infections (UTIs) constituted the most frequently observed clinical diagnosis (68.7%). Classification and Regression Trees (CART) and Random Forest (RF) classifiers emerged as the most effective algorithms. The relevant features associated with the emergence of ESBL include age and different classes of antibiotics, including cefuroxime, ceftazidime, cefepime, trimethoprim/ sulfamethoxazole, ciprofloxacin, and gentamicin. Fosfomycin nitrofurantoin, piperacillin/tazobactam, along with amikacin, meropenem, and imipenem, had a pronounced inverse relationship with the ESBL class. CART and RF-based ML algorithms can be employed to predict the most important features of ESBL. The significance of monitoring trends in ESBL infections is emphasized to facilitate the administration of appropriate antibiotic therapy.
doi_str_mv 10.2147/IDR.S469877
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11287471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811477506</galeid><sourcerecordid>A811477506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-afb8ba9fbec454c0581a2a4b2004be91e10240f45052844016a7ab5acaa1c3a73</originalsourceid><addsrcrecordid>eNptktFqFDEUhgdRbKm98l4CgggyazKTmWSupNaqla1Ka6_DmcyZ3chMsiYZtXc-Sp-lT2aWXcsumFzkcPL9P5zkz7KnjM4KxsXr83eXsyteN1KIB9khY0LmdSPKhzv1QXYcwneaVtnUXBSPs4OyoZLxSh5mf85-R7QdduRqhTr6aby7bTFCPgcdYYSA5G2q0BsgYDtyMQ3RdH5akEsMJkSwGomx5JPzHVgCHslXj51Jko5cB2MXBMhn_EUuQC-NxXyO4G1q392GmxBxfJI96mEIeLw9j7Lr92ffTj_m8y8fzk9P5rkuaxlz6FvZQtO3qHnFNa0kgwJ4W1DKW2wYMlpw2vOKVoXknLIaBLQVaACmSxDlUfZm47ua2hE7jTZ6GNTKmxH8jXJg1P6NNUu1cD8VY4UUXLDk8HLr4N2PCUNUowkahwEsuimoksq6lIWs64Q-36ALGFAZ27tkqde4OpEs_Zuo6Jqa_YdKu8PRaGexN6m_J3ixI1giDHEZ3DBF42zYB19tQO1dCB77-zkZVevcqJQbtc1Nop_tPs09-y8l5V_ujL9D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086382866</pqid></control><display><type>article</type><title>Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system</title><source>Taylor &amp; Francis Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Al-Khlifeh, Enas M ; Alkhazi, Ibrahim S ; Alrowaily, Majed Abdullah ; Alghamdi, Mansoor ; Alrashidi, Malek ; Tarawneh, Ahmad S ; Alkhawaldeh, Ibraheem M ; Hassanat, Ahmad B</creator><creatorcontrib>Al-Khlifeh, Enas M ; Alkhazi, Ibrahim S ; Alrowaily, Majed Abdullah ; Alghamdi, Mansoor ; Alrashidi, Malek ; Tarawneh, Ahmad S ; Alkhawaldeh, Ibraheem M ; Hassanat, Ahmad B</creatorcontrib><description>The incidence of microorganisms with extended-spectrum beta-lactamase (ESBL) is on the rise, posing a significant public health concern. The current application of machine learning (ML) focuses on predicting bacterial resistance to optimize antibiotic therapy. This study employs ML to forecast the occurrence of bacteria that generate ESBL and demonstrate resistance to multiple antibiotics (MDR). Six popular ML algorithms were initially trained on antibiotic resistance test patient reports (n = 489) collected from Al-Hussein/Salt Hospital in Jordan. Trained outcome models predict ESBL and multidrug resistance profiles based on microbiological and patients' clinical data. The results were utilized to select the optimal ML method to predict ESBL's most associated features. ( , 82%) was the most commonly identified microbe generating ESBL, displaying multidrug resistance. Urinary tract infections (UTIs) constituted the most frequently observed clinical diagnosis (68.7%). Classification and Regression Trees (CART) and Random Forest (RF) classifiers emerged as the most effective algorithms. The relevant features associated with the emergence of ESBL include age and different classes of antibiotics, including cefuroxime, ceftazidime, cefepime, trimethoprim/ sulfamethoxazole, ciprofloxacin, and gentamicin. Fosfomycin nitrofurantoin, piperacillin/tazobactam, along with amikacin, meropenem, and imipenem, had a pronounced inverse relationship with the ESBL class. CART and RF-based ML algorithms can be employed to predict the most important features of ESBL. The significance of monitoring trends in ESBL infections is emphasized to facilitate the administration of appropriate antibiotic therapy.</description><identifier>ISSN: 1178-6973</identifier><identifier>EISSN: 1178-6973</identifier><identifier>DOI: 10.2147/IDR.S469877</identifier><identifier>PMID: 39081458</identifier><language>eng</language><publisher>New Zealand: Dove Medical Press Limited</publisher><subject>Algorithms ; Antibacterial agents ; Bacteria ; Beta lactamases ; Drug resistance in microorganisms ; Forecasts and trends ; Health aspects ; Machine learning ; Microbiology ; Original Research ; Prognosis ; Public health ; Urinary tract infections</subject><ispartof>Infection and drug resistance, 2024-07, Vol.17, p.3225-3240</ispartof><rights>2024 Al-Khlifeh et al.</rights><rights>COPYRIGHT 2024 Dove Medical Press Limited</rights><rights>2024 Al-Khlifeh et al. 2024 Al-Khlifeh et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c368t-afb8ba9fbec454c0581a2a4b2004be91e10240f45052844016a7ab5acaa1c3a73</cites><orcidid>0009-0000-4601-3796 ; 0000-0001-8460-9240 ; 0000-0002-9991-304X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287471/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287471/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,37012,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39081458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Khlifeh, Enas M</creatorcontrib><creatorcontrib>Alkhazi, Ibrahim S</creatorcontrib><creatorcontrib>Alrowaily, Majed Abdullah</creatorcontrib><creatorcontrib>Alghamdi, Mansoor</creatorcontrib><creatorcontrib>Alrashidi, Malek</creatorcontrib><creatorcontrib>Tarawneh, Ahmad S</creatorcontrib><creatorcontrib>Alkhawaldeh, Ibraheem M</creatorcontrib><creatorcontrib>Hassanat, Ahmad B</creatorcontrib><title>Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system</title><title>Infection and drug resistance</title><addtitle>Infect Drug Resist</addtitle><description>The incidence of microorganisms with extended-spectrum beta-lactamase (ESBL) is on the rise, posing a significant public health concern. The current application of machine learning (ML) focuses on predicting bacterial resistance to optimize antibiotic therapy. This study employs ML to forecast the occurrence of bacteria that generate ESBL and demonstrate resistance to multiple antibiotics (MDR). Six popular ML algorithms were initially trained on antibiotic resistance test patient reports (n = 489) collected from Al-Hussein/Salt Hospital in Jordan. Trained outcome models predict ESBL and multidrug resistance profiles based on microbiological and patients' clinical data. The results were utilized to select the optimal ML method to predict ESBL's most associated features. ( , 82%) was the most commonly identified microbe generating ESBL, displaying multidrug resistance. Urinary tract infections (UTIs) constituted the most frequently observed clinical diagnosis (68.7%). Classification and Regression Trees (CART) and Random Forest (RF) classifiers emerged as the most effective algorithms. The relevant features associated with the emergence of ESBL include age and different classes of antibiotics, including cefuroxime, ceftazidime, cefepime, trimethoprim/ sulfamethoxazole, ciprofloxacin, and gentamicin. Fosfomycin nitrofurantoin, piperacillin/tazobactam, along with amikacin, meropenem, and imipenem, had a pronounced inverse relationship with the ESBL class. CART and RF-based ML algorithms can be employed to predict the most important features of ESBL. The significance of monitoring trends in ESBL infections is emphasized to facilitate the administration of appropriate antibiotic therapy.</description><subject>Algorithms</subject><subject>Antibacterial agents</subject><subject>Bacteria</subject><subject>Beta lactamases</subject><subject>Drug resistance in microorganisms</subject><subject>Forecasts and trends</subject><subject>Health aspects</subject><subject>Machine learning</subject><subject>Microbiology</subject><subject>Original Research</subject><subject>Prognosis</subject><subject>Public health</subject><subject>Urinary tract infections</subject><issn>1178-6973</issn><issn>1178-6973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptktFqFDEUhgdRbKm98l4CgggyazKTmWSupNaqla1Ka6_DmcyZ3chMsiYZtXc-Sp-lT2aWXcsumFzkcPL9P5zkz7KnjM4KxsXr83eXsyteN1KIB9khY0LmdSPKhzv1QXYcwneaVtnUXBSPs4OyoZLxSh5mf85-R7QdduRqhTr6aby7bTFCPgcdYYSA5G2q0BsgYDtyMQ3RdH5akEsMJkSwGomx5JPzHVgCHslXj51Jko5cB2MXBMhn_EUuQC-NxXyO4G1q392GmxBxfJI96mEIeLw9j7Lr92ffTj_m8y8fzk9P5rkuaxlz6FvZQtO3qHnFNa0kgwJ4W1DKW2wYMlpw2vOKVoXknLIaBLQVaACmSxDlUfZm47ua2hE7jTZ6GNTKmxH8jXJg1P6NNUu1cD8VY4UUXLDk8HLr4N2PCUNUowkahwEsuimoksq6lIWs64Q-36ALGFAZ27tkqde4OpEs_Zuo6Jqa_YdKu8PRaGexN6m_J3ixI1giDHEZ3DBF42zYB19tQO1dCB77-zkZVevcqJQbtc1Nop_tPs09-y8l5V_ujL9D</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>Al-Khlifeh, Enas M</creator><creator>Alkhazi, Ibrahim S</creator><creator>Alrowaily, Majed Abdullah</creator><creator>Alghamdi, Mansoor</creator><creator>Alrashidi, Malek</creator><creator>Tarawneh, Ahmad S</creator><creator>Alkhawaldeh, Ibraheem M</creator><creator>Hassanat, Ahmad B</creator><general>Dove Medical Press Limited</general><general>Dove</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0000-4601-3796</orcidid><orcidid>https://orcid.org/0000-0001-8460-9240</orcidid><orcidid>https://orcid.org/0000-0002-9991-304X</orcidid></search><sort><creationdate>20240730</creationdate><title>Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system</title><author>Al-Khlifeh, Enas M ; Alkhazi, Ibrahim S ; Alrowaily, Majed Abdullah ; Alghamdi, Mansoor ; Alrashidi, Malek ; Tarawneh, Ahmad S ; Alkhawaldeh, Ibraheem M ; Hassanat, Ahmad B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-afb8ba9fbec454c0581a2a4b2004be91e10240f45052844016a7ab5acaa1c3a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Antibacterial agents</topic><topic>Bacteria</topic><topic>Beta lactamases</topic><topic>Drug resistance in microorganisms</topic><topic>Forecasts and trends</topic><topic>Health aspects</topic><topic>Machine learning</topic><topic>Microbiology</topic><topic>Original Research</topic><topic>Prognosis</topic><topic>Public health</topic><topic>Urinary tract infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Khlifeh, Enas M</creatorcontrib><creatorcontrib>Alkhazi, Ibrahim S</creatorcontrib><creatorcontrib>Alrowaily, Majed Abdullah</creatorcontrib><creatorcontrib>Alghamdi, Mansoor</creatorcontrib><creatorcontrib>Alrashidi, Malek</creatorcontrib><creatorcontrib>Tarawneh, Ahmad S</creatorcontrib><creatorcontrib>Alkhawaldeh, Ibraheem M</creatorcontrib><creatorcontrib>Hassanat, Ahmad B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Infection and drug resistance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Khlifeh, Enas M</au><au>Alkhazi, Ibrahim S</au><au>Alrowaily, Majed Abdullah</au><au>Alghamdi, Mansoor</au><au>Alrashidi, Malek</au><au>Tarawneh, Ahmad S</au><au>Alkhawaldeh, Ibraheem M</au><au>Hassanat, Ahmad B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system</atitle><jtitle>Infection and drug resistance</jtitle><addtitle>Infect Drug Resist</addtitle><date>2024-07-30</date><risdate>2024</risdate><volume>17</volume><spage>3225</spage><epage>3240</epage><pages>3225-3240</pages><issn>1178-6973</issn><eissn>1178-6973</eissn><abstract>The incidence of microorganisms with extended-spectrum beta-lactamase (ESBL) is on the rise, posing a significant public health concern. The current application of machine learning (ML) focuses on predicting bacterial resistance to optimize antibiotic therapy. This study employs ML to forecast the occurrence of bacteria that generate ESBL and demonstrate resistance to multiple antibiotics (MDR). Six popular ML algorithms were initially trained on antibiotic resistance test patient reports (n = 489) collected from Al-Hussein/Salt Hospital in Jordan. Trained outcome models predict ESBL and multidrug resistance profiles based on microbiological and patients' clinical data. The results were utilized to select the optimal ML method to predict ESBL's most associated features. ( , 82%) was the most commonly identified microbe generating ESBL, displaying multidrug resistance. Urinary tract infections (UTIs) constituted the most frequently observed clinical diagnosis (68.7%). Classification and Regression Trees (CART) and Random Forest (RF) classifiers emerged as the most effective algorithms. The relevant features associated with the emergence of ESBL include age and different classes of antibiotics, including cefuroxime, ceftazidime, cefepime, trimethoprim/ sulfamethoxazole, ciprofloxacin, and gentamicin. Fosfomycin nitrofurantoin, piperacillin/tazobactam, along with amikacin, meropenem, and imipenem, had a pronounced inverse relationship with the ESBL class. CART and RF-based ML algorithms can be employed to predict the most important features of ESBL. The significance of monitoring trends in ESBL infections is emphasized to facilitate the administration of appropriate antibiotic therapy.</abstract><cop>New Zealand</cop><pub>Dove Medical Press Limited</pub><pmid>39081458</pmid><doi>10.2147/IDR.S469877</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0000-4601-3796</orcidid><orcidid>https://orcid.org/0000-0001-8460-9240</orcidid><orcidid>https://orcid.org/0000-0002-9991-304X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1178-6973
ispartof Infection and drug resistance, 2024-07, Vol.17, p.3225-3240
issn 1178-6973
1178-6973
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11287471
source Taylor & Francis Open Access; Publicly Available Content Database; PubMed Central
subjects Algorithms
Antibacterial agents
Bacteria
Beta lactamases
Drug resistance in microorganisms
Forecasts and trends
Health aspects
Machine learning
Microbiology
Original Research
Prognosis
Public health
Urinary tract infections
title Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Spectrum%C2%A0beta-Lactamase%20Bacteria%20and%20Multidrug%20Resistance%20in%20Jordan%20are%20Predicted%20Using%20a%20New%20Machine-Learning%C2%A0system&rft.jtitle=Infection%20and%20drug%20resistance&rft.au=Al-Khlifeh,%20Enas%20M&rft.date=2024-07-30&rft.volume=17&rft.spage=3225&rft.epage=3240&rft.pages=3225-3240&rft.issn=1178-6973&rft.eissn=1178-6973&rft_id=info:doi/10.2147/IDR.S469877&rft_dat=%3Cgale_pubme%3EA811477506%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-afb8ba9fbec454c0581a2a4b2004be91e10240f45052844016a7ab5acaa1c3a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086382866&rft_id=info:pmid/39081458&rft_galeid=A811477506&rfr_iscdi=true