Loading…

Impaired rat sciatic nerve sodium-potassium adenosine triphosphatase in acute streptozocin diabetes and its correction by dietary myo-inositol supplementation

Nerve conduction impairment in experimental diabetes has been empirically but not mechanistically linked to altered nerve myo-inositol metabolism. The phospholipid-dependent membrane-bound sodium-potassium ATPase provides a potential mechanism to relate defects in diabetic peripheral nerve myo-inosi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of clinical investigation 1983-09, Vol.72 (3), p.1058-1063
Main Authors: GREENE, D. A, LATTIMER, S. A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nerve conduction impairment in experimental diabetes has been empirically but not mechanistically linked to altered nerve myo-inositol metabolism. The phospholipid-dependent membrane-bound sodium-potassium ATPase provides a potential mechanism to relate defects in diabetic peripheral nerve myo-inositol-phospholipid metabolism, impulse conduction, and energy utilization. Therefore, the effect of streptozocin-induced diabetes mellitus and dietary myo-inositol supplementation on rat sciatic nerve sodium-potassium ATPase was studied. ATPase activity was measured enzymatically in sciatic nerve homogenates from 4-wk streptozocin diabetic rats and age-matched controls either fed a standard or 1% myo-inositol supplemented diet. The sodium-potassium ATPase components were assessed by ouabain inhibition or the omission of sodium and potassium ions. Diabetes reduced the composite ATPase activity recovered in crude homogenates of sciatic nerve. The 40% reduction in the sodium-potassium ATPase was selectively prevented by 1% myo-inositol supplementation (which preserved normal nerve conduction). Thus, in diabetic peripheral nerve, abnormal myo-inositol metabolism is associated with abnormal sodium-potassium ATPase activity. The mechanism of the effect of dietary myo-inositol to correct diabetic nerve conduction may be through changes in a sodium-potassium ATPase, possibly via changes in myo-inositol-containing phospholipids.
ISSN:0021-9738
1558-8238
DOI:10.1172/JCI111030