Loading…

LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation

Deep learning can exceed dermatologists' diagnostic accuracy in experimental image environments. However, inaccurate segmentation of images with multiple skin lesions can be seen with current methods. Thus, information present in multiple-lesion images, available to specialists, is not retrieva...

Full description

Saved in:
Bibliographic Details
Published in:Journal of digital imaging 2024-08, Vol.37 (4), p.1812-1823
Main Authors: Lama, Norsang, Stanley, Ronald Joe, Lama, Binita, Maurya, Akanksha, Nambisan, Anand, Hagerty, Jason, Phan, Thanh, Van Stoecker, William
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c356t-291708c8e047f3cc53881d006127095ad495f987b3ec2cacada96e718aef885b3
container_end_page 1823
container_issue 4
container_start_page 1812
container_title Journal of digital imaging
container_volume 37
creator Lama, Norsang
Stanley, Ronald Joe
Lama, Binita
Maurya, Akanksha
Nambisan, Anand
Hagerty, Jason
Phan, Thanh
Van Stoecker, William
description Deep learning can exceed dermatologists' diagnostic accuracy in experimental image environments. However, inaccurate segmentation of images with multiple skin lesions can be seen with current methods. Thus, information present in multiple-lesion images, available to specialists, is not retrievable by machine learning. While skin lesion images generally capture a single lesion, there may be cases in which a patient's skin variation may be identified as skin lesions, leading to multiple false positive segmentations in a single image. Conversely, image segmentation methods may find only one region and may not capture multiple lesions in an image. To remedy these problems, we propose a novel and effective data augmentation technique for skin lesion segmentation in dermoscopic images with multiple lesions. The lesion-aware mixup augmentation (LAMA) method generates a synthetic multi-lesion image by mixing two or more lesion images from the training set. We used the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset to train the deep neural network with the proposed LAMA method. As none of the previous skin lesion datasets (including ISIC 2017) has considered multiple lesions per image, we created a new multi-lesion (MuLe) segmentation dataset utilizing publicly available ISIC 2020 skin lesion images with multiple lesions per image. MuLe was used as a test set to evaluate the effectiveness of the proposed method. Our test results show that the proposed method improved the Jaccard score 8.3% from 0.687 to 0.744 and the Dice score 5% from 0.7923 to 0.8321 over a baseline model on MuLe test images. On the single-lesion ISIC 2017 test images, LAMA improved the baseline model's segmentation performance by 0.08%, raising the Jaccard score from 0.7947 to 0.8013 and the Dice score 0.6% from 0.8714 to 0.8766. The experimental results showed that LAMA improved the segmentation accuracy on both single-lesion and multi-lesion dermoscopic images. The proposed LAMA technique warrants further study.
doi_str_mv 10.1007/s10278-024-01000-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11300415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3088966388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-291708c8e047f3cc53881d006127095ad495f987b3ec2cacada96e718aef885b3</originalsourceid><addsrcrecordid>eNpdkUlPwzAUhC0EolXpH-CAInHhEni2s9hcUKjYpFQcCmfLdZySksTFblj-PS4tZTnZ8nwez_MgdIjhFAOkZw4DSVkIJArBH0AY76A-4RELCad099e-h4bOzT1CKaY0gX3UoywCnmDoo8s8G2fnQa5dZdowe5NWB-PqvVsEWTdrdLuUSy8EpbHB5LlqN2Aw0T_iAdorZe30cLMO0OP11cPoNszvb-5GWR4qGidLHwWnwBTTEKUlVSqmjOECIMEkBR7LIuJxyVk6pVoRJZUsJE90ipnUJWPxlA7Qxdp30U0bXSj_vpW1WNiqkfZDGFmJv0pbPYmZeRUYU4AIx97hZONgzUun3VI0lVO6rmWrTeeE_y0SUQ8zjx7_Q-ems62fT1BgjCeJj-8psqaUNc5ZXW7TYBCrmsS6JuFrEl81iVWKo99zbK98l0I_AY1njA0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3088966388</pqid></control><display><type>article</type><title>LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><source>PubMed Central</source><creator>Lama, Norsang ; Stanley, Ronald Joe ; Lama, Binita ; Maurya, Akanksha ; Nambisan, Anand ; Hagerty, Jason ; Phan, Thanh ; Van Stoecker, William</creator><creatorcontrib>Lama, Norsang ; Stanley, Ronald Joe ; Lama, Binita ; Maurya, Akanksha ; Nambisan, Anand ; Hagerty, Jason ; Phan, Thanh ; Van Stoecker, William</creatorcontrib><description>Deep learning can exceed dermatologists' diagnostic accuracy in experimental image environments. However, inaccurate segmentation of images with multiple skin lesions can be seen with current methods. Thus, information present in multiple-lesion images, available to specialists, is not retrievable by machine learning. While skin lesion images generally capture a single lesion, there may be cases in which a patient's skin variation may be identified as skin lesions, leading to multiple false positive segmentations in a single image. Conversely, image segmentation methods may find only one region and may not capture multiple lesions in an image. To remedy these problems, we propose a novel and effective data augmentation technique for skin lesion segmentation in dermoscopic images with multiple lesions. The lesion-aware mixup augmentation (LAMA) method generates a synthetic multi-lesion image by mixing two or more lesion images from the training set. We used the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset to train the deep neural network with the proposed LAMA method. As none of the previous skin lesion datasets (including ISIC 2017) has considered multiple lesions per image, we created a new multi-lesion (MuLe) segmentation dataset utilizing publicly available ISIC 2020 skin lesion images with multiple lesions per image. MuLe was used as a test set to evaluate the effectiveness of the proposed method. Our test results show that the proposed method improved the Jaccard score 8.3% from 0.687 to 0.744 and the Dice score 5% from 0.7923 to 0.8321 over a baseline model on MuLe test images. On the single-lesion ISIC 2017 test images, LAMA improved the baseline model's segmentation performance by 0.08%, raising the Jaccard score from 0.7947 to 0.8013 and the Dice score 0.6% from 0.8714 to 0.8766. The experimental results showed that LAMA improved the segmentation accuracy on both single-lesion and multi-lesion dermoscopic images. The proposed LAMA technique warrants further study.</description><identifier>ISSN: 2948-2933</identifier><identifier>ISSN: 0897-1889</identifier><identifier>ISSN: 2948-2925</identifier><identifier>EISSN: 2948-2933</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-024-01000-5</identifier><identifier>PMID: 38409610</identifier><language>eng</language><publisher>Switzerland: Springer Nature B.V</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Data augmentation ; Databases, Factual ; Datasets ; Deep Learning ; Dermatology ; Dermoscopy - methods ; Effectiveness ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Informatics ; Information retrieval ; Lesions ; Machine learning ; Medical diagnosis ; Melanoma ; Methods ; Neural networks ; Neural Networks, Computer ; Performance evaluation ; Skin - diagnostic imaging ; Skin - pathology ; Skin cancer ; Skin diseases ; Skin Diseases - diagnostic imaging ; Skin Diseases - pathology ; Skin lesions ; Skin Neoplasms - diagnostic imaging ; Skin Neoplasms - pathology ; Skin tests</subject><ispartof>Journal of digital imaging, 2024-08, Vol.37 (4), p.1812-1823</ispartof><rights>2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.</rights><rights>The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-291708c8e047f3cc53881d006127095ad495f987b3ec2cacada96e718aef885b3</cites><orcidid>0000-0003-0477-3388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300415/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300415/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38409610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lama, Norsang</creatorcontrib><creatorcontrib>Stanley, Ronald Joe</creatorcontrib><creatorcontrib>Lama, Binita</creatorcontrib><creatorcontrib>Maurya, Akanksha</creatorcontrib><creatorcontrib>Nambisan, Anand</creatorcontrib><creatorcontrib>Hagerty, Jason</creatorcontrib><creatorcontrib>Phan, Thanh</creatorcontrib><creatorcontrib>Van Stoecker, William</creatorcontrib><title>LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation</title><title>Journal of digital imaging</title><addtitle>J Imaging Inform Med</addtitle><description>Deep learning can exceed dermatologists' diagnostic accuracy in experimental image environments. However, inaccurate segmentation of images with multiple skin lesions can be seen with current methods. Thus, information present in multiple-lesion images, available to specialists, is not retrievable by machine learning. While skin lesion images generally capture a single lesion, there may be cases in which a patient's skin variation may be identified as skin lesions, leading to multiple false positive segmentations in a single image. Conversely, image segmentation methods may find only one region and may not capture multiple lesions in an image. To remedy these problems, we propose a novel and effective data augmentation technique for skin lesion segmentation in dermoscopic images with multiple lesions. The lesion-aware mixup augmentation (LAMA) method generates a synthetic multi-lesion image by mixing two or more lesion images from the training set. We used the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset to train the deep neural network with the proposed LAMA method. As none of the previous skin lesion datasets (including ISIC 2017) has considered multiple lesions per image, we created a new multi-lesion (MuLe) segmentation dataset utilizing publicly available ISIC 2020 skin lesion images with multiple lesions per image. MuLe was used as a test set to evaluate the effectiveness of the proposed method. Our test results show that the proposed method improved the Jaccard score 8.3% from 0.687 to 0.744 and the Dice score 5% from 0.7923 to 0.8321 over a baseline model on MuLe test images. On the single-lesion ISIC 2017 test images, LAMA improved the baseline model's segmentation performance by 0.08%, raising the Jaccard score from 0.7947 to 0.8013 and the Dice score 0.6% from 0.8714 to 0.8766. The experimental results showed that LAMA improved the segmentation accuracy on both single-lesion and multi-lesion dermoscopic images. The proposed LAMA technique warrants further study.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Data augmentation</subject><subject>Databases, Factual</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Dermatology</subject><subject>Dermoscopy - methods</subject><subject>Effectiveness</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Informatics</subject><subject>Information retrieval</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Melanoma</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Performance evaluation</subject><subject>Skin - diagnostic imaging</subject><subject>Skin - pathology</subject><subject>Skin cancer</subject><subject>Skin diseases</subject><subject>Skin Diseases - diagnostic imaging</subject><subject>Skin Diseases - pathology</subject><subject>Skin lesions</subject><subject>Skin Neoplasms - diagnostic imaging</subject><subject>Skin Neoplasms - pathology</subject><subject>Skin tests</subject><issn>2948-2933</issn><issn>0897-1889</issn><issn>2948-2925</issn><issn>2948-2933</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUlPwzAUhC0EolXpH-CAInHhEni2s9hcUKjYpFQcCmfLdZySksTFblj-PS4tZTnZ8nwez_MgdIjhFAOkZw4DSVkIJArBH0AY76A-4RELCad099e-h4bOzT1CKaY0gX3UoywCnmDoo8s8G2fnQa5dZdowe5NWB-PqvVsEWTdrdLuUSy8EpbHB5LlqN2Aw0T_iAdorZe30cLMO0OP11cPoNszvb-5GWR4qGidLHwWnwBTTEKUlVSqmjOECIMEkBR7LIuJxyVk6pVoRJZUsJE90ipnUJWPxlA7Qxdp30U0bXSj_vpW1WNiqkfZDGFmJv0pbPYmZeRUYU4AIx97hZONgzUun3VI0lVO6rmWrTeeE_y0SUQ8zjx7_Q-ems62fT1BgjCeJj-8psqaUNc5ZXW7TYBCrmsS6JuFrEl81iVWKo99zbK98l0I_AY1njA0</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Lama, Norsang</creator><creator>Stanley, Ronald Joe</creator><creator>Lama, Binita</creator><creator>Maurya, Akanksha</creator><creator>Nambisan, Anand</creator><creator>Hagerty, Jason</creator><creator>Phan, Thanh</creator><creator>Van Stoecker, William</creator><general>Springer Nature B.V</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0477-3388</orcidid></search><sort><creationdate>20240801</creationdate><title>LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation</title><author>Lama, Norsang ; Stanley, Ronald Joe ; Lama, Binita ; Maurya, Akanksha ; Nambisan, Anand ; Hagerty, Jason ; Phan, Thanh ; Van Stoecker, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-291708c8e047f3cc53881d006127095ad495f987b3ec2cacada96e718aef885b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Data augmentation</topic><topic>Databases, Factual</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Dermatology</topic><topic>Dermoscopy - methods</topic><topic>Effectiveness</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Informatics</topic><topic>Information retrieval</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Melanoma</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Performance evaluation</topic><topic>Skin - diagnostic imaging</topic><topic>Skin - pathology</topic><topic>Skin cancer</topic><topic>Skin diseases</topic><topic>Skin Diseases - diagnostic imaging</topic><topic>Skin Diseases - pathology</topic><topic>Skin lesions</topic><topic>Skin Neoplasms - diagnostic imaging</topic><topic>Skin Neoplasms - pathology</topic><topic>Skin tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lama, Norsang</creatorcontrib><creatorcontrib>Stanley, Ronald Joe</creatorcontrib><creatorcontrib>Lama, Binita</creatorcontrib><creatorcontrib>Maurya, Akanksha</creatorcontrib><creatorcontrib>Nambisan, Anand</creatorcontrib><creatorcontrib>Hagerty, Jason</creatorcontrib><creatorcontrib>Phan, Thanh</creatorcontrib><creatorcontrib>Van Stoecker, William</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lama, Norsang</au><au>Stanley, Ronald Joe</au><au>Lama, Binita</au><au>Maurya, Akanksha</au><au>Nambisan, Anand</au><au>Hagerty, Jason</au><au>Phan, Thanh</au><au>Van Stoecker, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation</atitle><jtitle>Journal of digital imaging</jtitle><addtitle>J Imaging Inform Med</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>37</volume><issue>4</issue><spage>1812</spage><epage>1823</epage><pages>1812-1823</pages><issn>2948-2933</issn><issn>0897-1889</issn><issn>2948-2925</issn><eissn>2948-2933</eissn><eissn>1618-727X</eissn><abstract>Deep learning can exceed dermatologists' diagnostic accuracy in experimental image environments. However, inaccurate segmentation of images with multiple skin lesions can be seen with current methods. Thus, information present in multiple-lesion images, available to specialists, is not retrievable by machine learning. While skin lesion images generally capture a single lesion, there may be cases in which a patient's skin variation may be identified as skin lesions, leading to multiple false positive segmentations in a single image. Conversely, image segmentation methods may find only one region and may not capture multiple lesions in an image. To remedy these problems, we propose a novel and effective data augmentation technique for skin lesion segmentation in dermoscopic images with multiple lesions. The lesion-aware mixup augmentation (LAMA) method generates a synthetic multi-lesion image by mixing two or more lesion images from the training set. We used the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset to train the deep neural network with the proposed LAMA method. As none of the previous skin lesion datasets (including ISIC 2017) has considered multiple lesions per image, we created a new multi-lesion (MuLe) segmentation dataset utilizing publicly available ISIC 2020 skin lesion images with multiple lesions per image. MuLe was used as a test set to evaluate the effectiveness of the proposed method. Our test results show that the proposed method improved the Jaccard score 8.3% from 0.687 to 0.744 and the Dice score 5% from 0.7923 to 0.8321 over a baseline model on MuLe test images. On the single-lesion ISIC 2017 test images, LAMA improved the baseline model's segmentation performance by 0.08%, raising the Jaccard score from 0.7947 to 0.8013 and the Dice score 0.6% from 0.8714 to 0.8766. The experimental results showed that LAMA improved the segmentation accuracy on both single-lesion and multi-lesion dermoscopic images. The proposed LAMA technique warrants further study.</abstract><cop>Switzerland</cop><pub>Springer Nature B.V</pub><pmid>38409610</pmid><doi>10.1007/s10278-024-01000-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0477-3388</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2948-2933
ispartof Journal of digital imaging, 2024-08, Vol.37 (4), p.1812-1823
issn 2948-2933
0897-1889
2948-2925
2948-2933
1618-727X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11300415
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List; PubMed Central
subjects Accuracy
Algorithms
Artificial neural networks
Data augmentation
Databases, Factual
Datasets
Deep Learning
Dermatology
Dermoscopy - methods
Effectiveness
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Informatics
Information retrieval
Lesions
Machine learning
Medical diagnosis
Melanoma
Methods
Neural networks
Neural Networks, Computer
Performance evaluation
Skin - diagnostic imaging
Skin - pathology
Skin cancer
Skin diseases
Skin Diseases - diagnostic imaging
Skin Diseases - pathology
Skin lesions
Skin Neoplasms - diagnostic imaging
Skin Neoplasms - pathology
Skin tests
title LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LAMA:%20Lesion-Aware%20Mixup%20Augmentation%20for%20Skin%20Lesion%20Segmentation&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Lama,%20Norsang&rft.date=2024-08-01&rft.volume=37&rft.issue=4&rft.spage=1812&rft.epage=1823&rft.pages=1812-1823&rft.issn=2948-2933&rft.eissn=2948-2933&rft_id=info:doi/10.1007/s10278-024-01000-5&rft_dat=%3Cproquest_pubme%3E3088966388%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-291708c8e047f3cc53881d006127095ad495f987b3ec2cacada96e718aef885b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3088966388&rft_id=info:pmid/38409610&rfr_iscdi=true