Loading…
LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation
Deep learning can exceed dermatologists' diagnostic accuracy in experimental image environments. However, inaccurate segmentation of images with multiple skin lesions can be seen with current methods. Thus, information present in multiple-lesion images, available to specialists, is not retrieva...
Saved in:
Published in: | Journal of digital imaging 2024-08, Vol.37 (4), p.1812-1823 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-291708c8e047f3cc53881d006127095ad495f987b3ec2cacada96e718aef885b3 |
container_end_page | 1823 |
container_issue | 4 |
container_start_page | 1812 |
container_title | Journal of digital imaging |
container_volume | 37 |
creator | Lama, Norsang Stanley, Ronald Joe Lama, Binita Maurya, Akanksha Nambisan, Anand Hagerty, Jason Phan, Thanh Van Stoecker, William |
description | Deep learning can exceed dermatologists' diagnostic accuracy in experimental image environments. However, inaccurate segmentation of images with multiple skin lesions can be seen with current methods. Thus, information present in multiple-lesion images, available to specialists, is not retrievable by machine learning. While skin lesion images generally capture a single lesion, there may be cases in which a patient's skin variation may be identified as skin lesions, leading to multiple false positive segmentations in a single image. Conversely, image segmentation methods may find only one region and may not capture multiple lesions in an image. To remedy these problems, we propose a novel and effective data augmentation technique for skin lesion segmentation in dermoscopic images with multiple lesions. The lesion-aware mixup augmentation (LAMA) method generates a synthetic multi-lesion image by mixing two or more lesion images from the training set. We used the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset to train the deep neural network with the proposed LAMA method. As none of the previous skin lesion datasets (including ISIC 2017) has considered multiple lesions per image, we created a new multi-lesion (MuLe) segmentation dataset utilizing publicly available ISIC 2020 skin lesion images with multiple lesions per image. MuLe was used as a test set to evaluate the effectiveness of the proposed method. Our test results show that the proposed method improved the Jaccard score 8.3% from 0.687 to 0.744 and the Dice score 5% from 0.7923 to 0.8321 over a baseline model on MuLe test images. On the single-lesion ISIC 2017 test images, LAMA improved the baseline model's segmentation performance by 0.08%, raising the Jaccard score from 0.7947 to 0.8013 and the Dice score 0.6% from 0.8714 to 0.8766. The experimental results showed that LAMA improved the segmentation accuracy on both single-lesion and multi-lesion dermoscopic images. The proposed LAMA technique warrants further study. |
doi_str_mv | 10.1007/s10278-024-01000-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11300415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3088966388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-291708c8e047f3cc53881d006127095ad495f987b3ec2cacada96e718aef885b3</originalsourceid><addsrcrecordid>eNpdkUlPwzAUhC0EolXpH-CAInHhEni2s9hcUKjYpFQcCmfLdZySksTFblj-PS4tZTnZ8nwez_MgdIjhFAOkZw4DSVkIJArBH0AY76A-4RELCad099e-h4bOzT1CKaY0gX3UoywCnmDoo8s8G2fnQa5dZdowe5NWB-PqvVsEWTdrdLuUSy8EpbHB5LlqN2Aw0T_iAdorZe30cLMO0OP11cPoNszvb-5GWR4qGidLHwWnwBTTEKUlVSqmjOECIMEkBR7LIuJxyVk6pVoRJZUsJE90ipnUJWPxlA7Qxdp30U0bXSj_vpW1WNiqkfZDGFmJv0pbPYmZeRUYU4AIx97hZONgzUun3VI0lVO6rmWrTeeE_y0SUQ8zjx7_Q-ems62fT1BgjCeJj-8psqaUNc5ZXW7TYBCrmsS6JuFrEl81iVWKo99zbK98l0I_AY1njA0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3088966388</pqid></control><display><type>article</type><title>LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><source>PubMed Central</source><creator>Lama, Norsang ; Stanley, Ronald Joe ; Lama, Binita ; Maurya, Akanksha ; Nambisan, Anand ; Hagerty, Jason ; Phan, Thanh ; Van Stoecker, William</creator><creatorcontrib>Lama, Norsang ; Stanley, Ronald Joe ; Lama, Binita ; Maurya, Akanksha ; Nambisan, Anand ; Hagerty, Jason ; Phan, Thanh ; Van Stoecker, William</creatorcontrib><description>Deep learning can exceed dermatologists' diagnostic accuracy in experimental image environments. However, inaccurate segmentation of images with multiple skin lesions can be seen with current methods. Thus, information present in multiple-lesion images, available to specialists, is not retrievable by machine learning. While skin lesion images generally capture a single lesion, there may be cases in which a patient's skin variation may be identified as skin lesions, leading to multiple false positive segmentations in a single image. Conversely, image segmentation methods may find only one region and may not capture multiple lesions in an image. To remedy these problems, we propose a novel and effective data augmentation technique for skin lesion segmentation in dermoscopic images with multiple lesions. The lesion-aware mixup augmentation (LAMA) method generates a synthetic multi-lesion image by mixing two or more lesion images from the training set. We used the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset to train the deep neural network with the proposed LAMA method. As none of the previous skin lesion datasets (including ISIC 2017) has considered multiple lesions per image, we created a new multi-lesion (MuLe) segmentation dataset utilizing publicly available ISIC 2020 skin lesion images with multiple lesions per image. MuLe was used as a test set to evaluate the effectiveness of the proposed method. Our test results show that the proposed method improved the Jaccard score 8.3% from 0.687 to 0.744 and the Dice score 5% from 0.7923 to 0.8321 over a baseline model on MuLe test images. On the single-lesion ISIC 2017 test images, LAMA improved the baseline model's segmentation performance by 0.08%, raising the Jaccard score from 0.7947 to 0.8013 and the Dice score 0.6% from 0.8714 to 0.8766. The experimental results showed that LAMA improved the segmentation accuracy on both single-lesion and multi-lesion dermoscopic images. The proposed LAMA technique warrants further study.</description><identifier>ISSN: 2948-2933</identifier><identifier>ISSN: 0897-1889</identifier><identifier>ISSN: 2948-2925</identifier><identifier>EISSN: 2948-2933</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-024-01000-5</identifier><identifier>PMID: 38409610</identifier><language>eng</language><publisher>Switzerland: Springer Nature B.V</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Data augmentation ; Databases, Factual ; Datasets ; Deep Learning ; Dermatology ; Dermoscopy - methods ; Effectiveness ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Informatics ; Information retrieval ; Lesions ; Machine learning ; Medical diagnosis ; Melanoma ; Methods ; Neural networks ; Neural Networks, Computer ; Performance evaluation ; Skin - diagnostic imaging ; Skin - pathology ; Skin cancer ; Skin diseases ; Skin Diseases - diagnostic imaging ; Skin Diseases - pathology ; Skin lesions ; Skin Neoplasms - diagnostic imaging ; Skin Neoplasms - pathology ; Skin tests</subject><ispartof>Journal of digital imaging, 2024-08, Vol.37 (4), p.1812-1823</ispartof><rights>2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.</rights><rights>The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-291708c8e047f3cc53881d006127095ad495f987b3ec2cacada96e718aef885b3</cites><orcidid>0000-0003-0477-3388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300415/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300415/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38409610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lama, Norsang</creatorcontrib><creatorcontrib>Stanley, Ronald Joe</creatorcontrib><creatorcontrib>Lama, Binita</creatorcontrib><creatorcontrib>Maurya, Akanksha</creatorcontrib><creatorcontrib>Nambisan, Anand</creatorcontrib><creatorcontrib>Hagerty, Jason</creatorcontrib><creatorcontrib>Phan, Thanh</creatorcontrib><creatorcontrib>Van Stoecker, William</creatorcontrib><title>LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation</title><title>Journal of digital imaging</title><addtitle>J Imaging Inform Med</addtitle><description>Deep learning can exceed dermatologists' diagnostic accuracy in experimental image environments. However, inaccurate segmentation of images with multiple skin lesions can be seen with current methods. Thus, information present in multiple-lesion images, available to specialists, is not retrievable by machine learning. While skin lesion images generally capture a single lesion, there may be cases in which a patient's skin variation may be identified as skin lesions, leading to multiple false positive segmentations in a single image. Conversely, image segmentation methods may find only one region and may not capture multiple lesions in an image. To remedy these problems, we propose a novel and effective data augmentation technique for skin lesion segmentation in dermoscopic images with multiple lesions. The lesion-aware mixup augmentation (LAMA) method generates a synthetic multi-lesion image by mixing two or more lesion images from the training set. We used the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset to train the deep neural network with the proposed LAMA method. As none of the previous skin lesion datasets (including ISIC 2017) has considered multiple lesions per image, we created a new multi-lesion (MuLe) segmentation dataset utilizing publicly available ISIC 2020 skin lesion images with multiple lesions per image. MuLe was used as a test set to evaluate the effectiveness of the proposed method. Our test results show that the proposed method improved the Jaccard score 8.3% from 0.687 to 0.744 and the Dice score 5% from 0.7923 to 0.8321 over a baseline model on MuLe test images. On the single-lesion ISIC 2017 test images, LAMA improved the baseline model's segmentation performance by 0.08%, raising the Jaccard score from 0.7947 to 0.8013 and the Dice score 0.6% from 0.8714 to 0.8766. The experimental results showed that LAMA improved the segmentation accuracy on both single-lesion and multi-lesion dermoscopic images. The proposed LAMA technique warrants further study.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Data augmentation</subject><subject>Databases, Factual</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Dermatology</subject><subject>Dermoscopy - methods</subject><subject>Effectiveness</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Informatics</subject><subject>Information retrieval</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Melanoma</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Performance evaluation</subject><subject>Skin - diagnostic imaging</subject><subject>Skin - pathology</subject><subject>Skin cancer</subject><subject>Skin diseases</subject><subject>Skin Diseases - diagnostic imaging</subject><subject>Skin Diseases - pathology</subject><subject>Skin lesions</subject><subject>Skin Neoplasms - diagnostic imaging</subject><subject>Skin Neoplasms - pathology</subject><subject>Skin tests</subject><issn>2948-2933</issn><issn>0897-1889</issn><issn>2948-2925</issn><issn>2948-2933</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUlPwzAUhC0EolXpH-CAInHhEni2s9hcUKjYpFQcCmfLdZySksTFblj-PS4tZTnZ8nwez_MgdIjhFAOkZw4DSVkIJArBH0AY76A-4RELCad099e-h4bOzT1CKaY0gX3UoywCnmDoo8s8G2fnQa5dZdowe5NWB-PqvVsEWTdrdLuUSy8EpbHB5LlqN2Aw0T_iAdorZe30cLMO0OP11cPoNszvb-5GWR4qGidLHwWnwBTTEKUlVSqmjOECIMEkBR7LIuJxyVk6pVoRJZUsJE90ipnUJWPxlA7Qxdp30U0bXSj_vpW1WNiqkfZDGFmJv0pbPYmZeRUYU4AIx97hZONgzUun3VI0lVO6rmWrTeeE_y0SUQ8zjx7_Q-ems62fT1BgjCeJj-8psqaUNc5ZXW7TYBCrmsS6JuFrEl81iVWKo99zbK98l0I_AY1njA0</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Lama, Norsang</creator><creator>Stanley, Ronald Joe</creator><creator>Lama, Binita</creator><creator>Maurya, Akanksha</creator><creator>Nambisan, Anand</creator><creator>Hagerty, Jason</creator><creator>Phan, Thanh</creator><creator>Van Stoecker, William</creator><general>Springer Nature B.V</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0477-3388</orcidid></search><sort><creationdate>20240801</creationdate><title>LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation</title><author>Lama, Norsang ; Stanley, Ronald Joe ; Lama, Binita ; Maurya, Akanksha ; Nambisan, Anand ; Hagerty, Jason ; Phan, Thanh ; Van Stoecker, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-291708c8e047f3cc53881d006127095ad495f987b3ec2cacada96e718aef885b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Data augmentation</topic><topic>Databases, Factual</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Dermatology</topic><topic>Dermoscopy - methods</topic><topic>Effectiveness</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Informatics</topic><topic>Information retrieval</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Melanoma</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Performance evaluation</topic><topic>Skin - diagnostic imaging</topic><topic>Skin - pathology</topic><topic>Skin cancer</topic><topic>Skin diseases</topic><topic>Skin Diseases - diagnostic imaging</topic><topic>Skin Diseases - pathology</topic><topic>Skin lesions</topic><topic>Skin Neoplasms - diagnostic imaging</topic><topic>Skin Neoplasms - pathology</topic><topic>Skin tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lama, Norsang</creatorcontrib><creatorcontrib>Stanley, Ronald Joe</creatorcontrib><creatorcontrib>Lama, Binita</creatorcontrib><creatorcontrib>Maurya, Akanksha</creatorcontrib><creatorcontrib>Nambisan, Anand</creatorcontrib><creatorcontrib>Hagerty, Jason</creatorcontrib><creatorcontrib>Phan, Thanh</creatorcontrib><creatorcontrib>Van Stoecker, William</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lama, Norsang</au><au>Stanley, Ronald Joe</au><au>Lama, Binita</au><au>Maurya, Akanksha</au><au>Nambisan, Anand</au><au>Hagerty, Jason</au><au>Phan, Thanh</au><au>Van Stoecker, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation</atitle><jtitle>Journal of digital imaging</jtitle><addtitle>J Imaging Inform Med</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>37</volume><issue>4</issue><spage>1812</spage><epage>1823</epage><pages>1812-1823</pages><issn>2948-2933</issn><issn>0897-1889</issn><issn>2948-2925</issn><eissn>2948-2933</eissn><eissn>1618-727X</eissn><abstract>Deep learning can exceed dermatologists' diagnostic accuracy in experimental image environments. However, inaccurate segmentation of images with multiple skin lesions can be seen with current methods. Thus, information present in multiple-lesion images, available to specialists, is not retrievable by machine learning. While skin lesion images generally capture a single lesion, there may be cases in which a patient's skin variation may be identified as skin lesions, leading to multiple false positive segmentations in a single image. Conversely, image segmentation methods may find only one region and may not capture multiple lesions in an image. To remedy these problems, we propose a novel and effective data augmentation technique for skin lesion segmentation in dermoscopic images with multiple lesions. The lesion-aware mixup augmentation (LAMA) method generates a synthetic multi-lesion image by mixing two or more lesion images from the training set. We used the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset to train the deep neural network with the proposed LAMA method. As none of the previous skin lesion datasets (including ISIC 2017) has considered multiple lesions per image, we created a new multi-lesion (MuLe) segmentation dataset utilizing publicly available ISIC 2020 skin lesion images with multiple lesions per image. MuLe was used as a test set to evaluate the effectiveness of the proposed method. Our test results show that the proposed method improved the Jaccard score 8.3% from 0.687 to 0.744 and the Dice score 5% from 0.7923 to 0.8321 over a baseline model on MuLe test images. On the single-lesion ISIC 2017 test images, LAMA improved the baseline model's segmentation performance by 0.08%, raising the Jaccard score from 0.7947 to 0.8013 and the Dice score 0.6% from 0.8714 to 0.8766. The experimental results showed that LAMA improved the segmentation accuracy on both single-lesion and multi-lesion dermoscopic images. The proposed LAMA technique warrants further study.</abstract><cop>Switzerland</cop><pub>Springer Nature B.V</pub><pmid>38409610</pmid><doi>10.1007/s10278-024-01000-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0477-3388</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2948-2933 |
ispartof | Journal of digital imaging, 2024-08, Vol.37 (4), p.1812-1823 |
issn | 2948-2933 0897-1889 2948-2925 2948-2933 1618-727X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11300415 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List; PubMed Central |
subjects | Accuracy Algorithms Artificial neural networks Data augmentation Databases, Factual Datasets Deep Learning Dermatology Dermoscopy - methods Effectiveness Humans Image Interpretation, Computer-Assisted - methods Image processing Image Processing, Computer-Assisted - methods Image segmentation Informatics Information retrieval Lesions Machine learning Medical diagnosis Melanoma Methods Neural networks Neural Networks, Computer Performance evaluation Skin - diagnostic imaging Skin - pathology Skin cancer Skin diseases Skin Diseases - diagnostic imaging Skin Diseases - pathology Skin lesions Skin Neoplasms - diagnostic imaging Skin Neoplasms - pathology Skin tests |
title | LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LAMA:%20Lesion-Aware%20Mixup%20Augmentation%20for%20Skin%20Lesion%20Segmentation&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Lama,%20Norsang&rft.date=2024-08-01&rft.volume=37&rft.issue=4&rft.spage=1812&rft.epage=1823&rft.pages=1812-1823&rft.issn=2948-2933&rft.eissn=2948-2933&rft_id=info:doi/10.1007/s10278-024-01000-5&rft_dat=%3Cproquest_pubme%3E3088966388%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-291708c8e047f3cc53881d006127095ad495f987b3ec2cacada96e718aef885b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3088966388&rft_id=info:pmid/38409610&rfr_iscdi=true |