Loading…
Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues
Our laboratory has previously demonstrated that increased malignancy of several histological types of human and animal tumours is associated with increases in their cathepsin B activity, particularly cathepsin B activity associated with plasma-membrane/endosomal vesicles or shed vesicles. Here we re...
Saved in:
Published in: | Biochemical journal 1992-02, Vol.282 (1), p.273-278 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Our laboratory has previously demonstrated that increased malignancy of several histological types of human and animal tumours is associated with increases in their cathepsin B activity, particularly cathepsin B activity associated with plasma-membrane/endosomal vesicles or shed vesicles. Here we report that cathepsin B from normal or tumour tissues degrades purified extracellular-matrix components, type IV collagen, laminin and fibronectin, at both acid pH and neutral pH. The number and sizes of degradation products were analysed by SDS/PAGE. Cathepsin B from both sources exhibited similar activities towards, and similar patterns of cleavage of, the extracellular-matrix proteins. At neutral pH, cathepsin B from both sources appeared to undergo autodegradation, a process that was decreased in the presence of alternative substrates such as the extracellular-matrix proteins. Cathepsin B readily degraded type IV collagen at 25 degrees C, indicating activity towards native type IV collagen. Fibronectin degradation products of 100-200 kDa and of 18 and 22 kDa were observed. A single 70 kDa fragment was released from laminin under non-reducing conditions and multiple fragments ranging from 45 to 200 kDa under reducing conditions. These results suggest that cathepsin B at or near the surface of malignant tumour cells may play a functional role in the focal dissolution of extracellular matrices. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj2820273 |