Loading…
The NADPH-oxidase-associated H+ channel is opened by arachidonate
The H+ channel associated with the generation of O2.- by NADPH oxidase and the oxidase itself must both be activated in response to stimuli (e.g. phorbol esters, chemotactic peptides, certain fatty acids). We have investigated the effects of membrane potential, an imposed pH gradient and a combinati...
Saved in:
Published in: | Biochemical journal 1992-04, Vol.283 (1), p.171-175 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The H+ channel associated with the generation of O2.- by NADPH oxidase and the oxidase itself must both be activated in response to stimuli (e.g. phorbol esters, chemotactic peptides, certain fatty acids). We have investigated the effects of membrane potential, an imposed pH gradient and a combination of the two (the protonmotive force) on the H+ conductivity of the cytoplast membrane. H+ conductivity was observed only in the presence of arachidonate and not in its absence. In the presence of arachidonate, H+ movement was determined by the protonmotive force. The effect of arachidonate was probably on a channel, since this fatty acid did not significantly increase the H+ permeability of artificial phospholipid membranes. It appears, therefore, that arachidonate is required both for the activation of O2.- production and the associated H(+)-channel-mediated efflux. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj2830171 |