Loading…

Air-through-precursor suction-augmented replica molding for fabrication of anisotropic microparticles in gas-impermeable molds

Replica molding (REM) is a powerful technique for fabricating anisotropic microparticles. Current REM methods rely on the use of gas-permeable molds for defect-free castings and facile particle recovery. However, they often encounter limitations on either technical accessibility or producible partic...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2024-08, Vol.14 (35), p.2519-25197
Main Authors: Mun, Seok Joon, Jang, Wookyoung, Choi, Jun Hee, Lim, Yong Jun, Bong, Ki Wan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Replica molding (REM) is a powerful technique for fabricating anisotropic microparticles. Current REM methods rely on the use of gas-permeable molds for defect-free castings and facile particle recovery. However, they often encounter limitations on either technical accessibility or producible particle diversity. While the use of gas-impermeable molds presents a promising solution to these challenges, particle production within such molds necessitates addressing two critical issues: precursor loading and particle recovery. This study introduces a REM methodology specifically tailored to enable the production of anisotropic microparticles within gas-impermeable molds. To address the issue of precursor loading, our approach incorporates the air-through-precursor suction method, employing a degassed polydimethylsiloxane block to effectively eliminate air bubbles trapped in microwells. Additionally, fluorosilane pretreatment of the mold surface, along with the polyvinyl alcohol film formation, significantly enhances particle recovery up to 249-fold while ensuring particle homogeneity. This methodology demonstrates high adaptability to various gas-impermeable molds and curing techniques. The practical feasibility is illustrated through the successful production of functional composite microparticles that can be effectively utilized for oxygen sensing and self-assembly, challenging in conventional REM. An air-through-precursor suction-augmented replica molding method for producing various functional anisotropic microparticles within gas-impermeable molds.
ISSN:2046-2069
2046-2069
DOI:10.1039/d4ra04719b