Loading…

Probiotics and Paraprobiotics: Effects on Microbiota-Gut-Brain Axis and Their Consequent Potential in Neuropsychiatric Therapy

Neuropsychiatric disorders are clinical conditions that affect cognitive function and emotional stability, often resulting from damage or disease in the central nervous system (CNS). These disorders are a worldwide concern, impacting approximately 12.5% of the global population. The gut microbiota h...

Full description

Saved in:
Bibliographic Details
Published in:Probiotics and antimicrobial proteins 2024-08, Vol.16 (4), p.1440-1464
Main Authors: Mudaliar, Samriti Balaji, Poojary, Sumith Sundara, Bharath Prasad, Alevoor Srinivas, Mazumder, Nirmal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neuropsychiatric disorders are clinical conditions that affect cognitive function and emotional stability, often resulting from damage or disease in the central nervous system (CNS). These disorders are a worldwide concern, impacting approximately 12.5% of the global population. The gut microbiota has been linked to neurological development and function, implicating its involvement in neuropsychiatric conditions. Due to their interaction with gut microbial communities, probiotics offer a natural alternative to traditional treatments such as therapeutic drugs and interventions for alleviating neuropsychiatric symptoms. Introduced by Metchnikoff in the early 1900s, probiotics are live microorganisms that provide various health benefits, including improved digestion, enhanced sleep quality, and reduced mental problems. However, concerns about their safety, particularly in immunocompromised patients, warrant further investigation; this has led to the concept of “paraprobiotics”, inactivated forms of beneficial microorganisms that offer a safer alternative. This review begins by exploring different methods of inactivation, each targeting specific cellular components like DNA or proteins. The choice of inactivation method is crucial, as the health benefits may vary depending on the conditions employed for inactivation. The subsequent sections focus on the potential mechanisms of action and specific applications of probiotics and paraprobiotics in neuropsychiatric therapy. Probiotics and paraprobiotics interact with gut microbes, modulating the gut microbial composition and alleviating gut dysbiosis. The resulting neuropsychiatric benefits primarily stem from the gut-brain axis, a bidirectional communication channel involving various pathways discussed in the review. While further research is needed, probiotics and paraprobiotics are promising therapeutic agents for the management of neuropsychiatric disorders.
ISSN:1867-1306
1867-1314
1867-1314
DOI:10.1007/s12602-024-10214-6