Loading…

Climate Justice Implications of Natech Disasters: Excess Contaminant Releases during Hurricanes on the Texas Gulf Coast

Extreme weather events are becoming more severe due to climate change, increasing the risk of contaminant releases from hazardous sites disproportionately located in low-income communities of color. We evaluated contaminant releases during Hurricanes Rita, Ike, and Harvey in Texas and used regressio...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2024-08, Vol.58 (32), p.14180-14192
Main Authors: Berberian, Alique G., Morello-Frosch, Rachel, Karasaki, Seigi, Cushing, Lara J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extreme weather events are becoming more severe due to climate change, increasing the risk of contaminant releases from hazardous sites disproportionately located in low-income communities of color. We evaluated contaminant releases during Hurricanes Rita, Ike, and Harvey in Texas and used regression models to estimate associations between neighborhood racial/ethnic composition and residential proximity to hurricane-related contaminant releases. Two-to-three times as many excess releases were reported during hurricanes compared to business-as-usual periods. Petrochemical manufacturing and refineries were responsible for most air emissions events. Multivariable models revealed sociodemographic disparities in likelihood of releases; compared to neighborhoods near regulated facilities without a release, a one-percent increase in Hispanic residents was associated with a 5 and 10% increase in the likelihood of an air emissions event downwind and within 2 km during Hurricanes Rita and Ike (odds ratio and 95% credible interval= 1.05 [1.00, 1.13], combined model) and Harvey (1.10 [1.00, 1.23]), respectively. Higher percentages of renters (1.07 [1.03, 1.11], combined Rita and Ike model) and rates of poverty (1.06 [1.01, 1.12], Harvey model) were associated with a higher likelihood of a release to land or water, while the percentage of Black residents (0.94 [0.89, 1.00], Harvey model) was associated with a slightly lower likelihood. Population density was consistently associated with a decreased likelihood of a contaminant release to air, land, or water. Our findings highlight social inequalities in the risks posed by natural–technological disasters that disproportionately impact Hispanic, renter, low-income, and rural populations.
ISSN:0013-936X
1520-5851
1520-5851
DOI:10.1021/acs.est.3c10797