Loading…
Micro-robotic percutaneous targeting of type II endoleaks in the angio-suite
Purpose Endovascular aneurysm repair has emerged as the standard therapy for abdominal aortic aneurysms. In 9–30% of cases, retrograde filling of the aneurysm sac through patent branch arteries may result in persistence of blood flow outside the graft and within the aneurysm sac. This condition is c...
Saved in:
Published in: | International journal for computer assisted radiology and surgery 2024-08, Vol.19 (8), p.1489-1494 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-79cd4b3502179fd82e04f627ae63340245bf4216451dc9d9899a7f8c93763ed33 |
container_end_page | 1494 |
container_issue | 8 |
container_start_page | 1489 |
container_title | International journal for computer assisted radiology and surgery |
container_volume | 19 |
creator | Widmann, Gerlig Deeg, Johannes Frech, Andreas Klocker, Josef Feuchtner, Gudrun Freund, Martin |
description | Purpose
Endovascular aneurysm repair has emerged as the standard therapy for abdominal aortic aneurysms. In 9–30% of cases, retrograde filling of the aneurysm sac through patent branch arteries may result in persistence of blood flow outside the graft and within the aneurysm sac. This condition is called an endoleak type II, which may be treated by catheter-based embolization in case of continued sac enlargement. If an endovascular access is not possible, percutaneous targeting of the perfused nidus remains the only option. However, this can be very challenging due to the difficult access and deep puncture with risk of organ perforation and bleeding. Innovative targeting techniques such as robotics may provide a promising option for safe and successful targeting.
Methods
In nine consecutive patients, percutaneous embolization of type II endoleaks was performed using a table-mounted micro-robotic targeting platform. The needle path from the skin entry to the perfused nidus was planned based on the C-arm CT image data in the angio-suite. Entry point and path angle were aligned using the joystick-operated micro-robotic system under fluoroscopic control, and the coaxial needle was introduced until the target point within the perfused nidus was reached.
Results
All punctures were successful, and there were no puncture-related complications. The pre-operative C-arm CT was executed in 11–15 s, and pathway planning required 2–3 min. The robotic setup and sterile draping were performed in 1–2 min, and the alignment to the surgical plan took no longer than 30 s.
Conclusion
Due to the small size, the micro-robotic platform seamlessly integrated into the routine clinical workflow in the angio-suite. It offered significant benefits to the planning and safe execution of double-angulated deeply localized targets, such as type II endoleaks. |
doi_str_mv | 10.1007/s11548-024-03195-y |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11329533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093886782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-79cd4b3502179fd82e04f627ae63340245bf4216451dc9d9899a7f8c93763ed33</originalsourceid><addsrcrecordid>eNp9kUuPFCEUhYnROGPrH3BhSNy4QXk_VsZMfHTSxo2uCU1RNYzV0AI1Sf97GWscRxeuILnfPXDOAeA5wa8JxupNJURwjTDlCDNiBDo9AOdES4Ikp-bhvfsZeFLrFcZcKCYegzOmNSFc83Ow-xx9yajkfW7Rw2MofmkuhbxU2FyZQotpgnmE7XQMcLuFIQ15Du57hTHBdhmgS1PMqC6xhafg0ejmGp7dnhvw7cP7rxef0O7Lx-3Fux3yTMiGlPED3zOBKVFmHDQNmI-SKhckY7zbEfuRUyK5IIM3g9HGODVqb5iSLAyMbcDbVfe47A9h8CG14mZ7LPHgyslmF-3fkxQv7ZSvLSGMGsFuFF7dKpT8Ywm12UOsPszzat0yLKmgSve8NuDlP-hVXkrq_jplepJSadopulI9zVpLGO9-Q7C9acuubdluz_5qy5760ov7Pu5WftfTAbYCtY_SFMqft_8j-xOsj6BJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093886782</pqid></control><display><type>article</type><title>Micro-robotic percutaneous targeting of type II endoleaks in the angio-suite</title><source>Springer Link</source><creator>Widmann, Gerlig ; Deeg, Johannes ; Frech, Andreas ; Klocker, Josef ; Feuchtner, Gudrun ; Freund, Martin</creator><creatorcontrib>Widmann, Gerlig ; Deeg, Johannes ; Frech, Andreas ; Klocker, Josef ; Feuchtner, Gudrun ; Freund, Martin</creatorcontrib><description>Purpose
Endovascular aneurysm repair has emerged as the standard therapy for abdominal aortic aneurysms. In 9–30% of cases, retrograde filling of the aneurysm sac through patent branch arteries may result in persistence of blood flow outside the graft and within the aneurysm sac. This condition is called an endoleak type II, which may be treated by catheter-based embolization in case of continued sac enlargement. If an endovascular access is not possible, percutaneous targeting of the perfused nidus remains the only option. However, this can be very challenging due to the difficult access and deep puncture with risk of organ perforation and bleeding. Innovative targeting techniques such as robotics may provide a promising option for safe and successful targeting.
Methods
In nine consecutive patients, percutaneous embolization of type II endoleaks was performed using a table-mounted micro-robotic targeting platform. The needle path from the skin entry to the perfused nidus was planned based on the C-arm CT image data in the angio-suite. Entry point and path angle were aligned using the joystick-operated micro-robotic system under fluoroscopic control, and the coaxial needle was introduced until the target point within the perfused nidus was reached.
Results
All punctures were successful, and there were no puncture-related complications. The pre-operative C-arm CT was executed in 11–15 s, and pathway planning required 2–3 min. The robotic setup and sterile draping were performed in 1–2 min, and the alignment to the surgical plan took no longer than 30 s.
Conclusion
Due to the small size, the micro-robotic platform seamlessly integrated into the routine clinical workflow in the angio-suite. It offered significant benefits to the planning and safe execution of double-angulated deeply localized targets, such as type II endoleaks.</description><identifier>ISSN: 1861-6429</identifier><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-024-03195-y</identifier><identifier>PMID: 38811484</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aged ; Aged, 80 and over ; Aneurysms ; Aorta ; Aortic Aneurysm, Abdominal - surgery ; Blood flow ; Computed tomography ; Computer Imaging ; Computer Science ; Embolization ; Embolization, Therapeutic - methods ; Endoleak - etiology ; Endovascular Procedures - methods ; Female ; Health Informatics ; Humans ; Imaging ; Male ; Medicine ; Medicine & Public Health ; Needles ; Original ; Original Article ; Pattern Recognition and Graphics ; Perforation ; Radiology ; Robot control ; Robotic Surgical Procedures - methods ; Robotics ; Robotics - methods ; Surgery ; Tomography, X-Ray Computed - methods ; Treatment Outcome ; Vision ; Workflow</subject><ispartof>International journal for computer assisted radiology and surgery, 2024-08, Vol.19 (8), p.1489-1494</ispartof><rights>The Author(s) 2024. corrected publication 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-79cd4b3502179fd82e04f627ae63340245bf4216451dc9d9899a7f8c93763ed33</cites><orcidid>0000-0002-7255-0672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38811484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Widmann, Gerlig</creatorcontrib><creatorcontrib>Deeg, Johannes</creatorcontrib><creatorcontrib>Frech, Andreas</creatorcontrib><creatorcontrib>Klocker, Josef</creatorcontrib><creatorcontrib>Feuchtner, Gudrun</creatorcontrib><creatorcontrib>Freund, Martin</creatorcontrib><title>Micro-robotic percutaneous targeting of type II endoleaks in the angio-suite</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><description>Purpose
Endovascular aneurysm repair has emerged as the standard therapy for abdominal aortic aneurysms. In 9–30% of cases, retrograde filling of the aneurysm sac through patent branch arteries may result in persistence of blood flow outside the graft and within the aneurysm sac. This condition is called an endoleak type II, which may be treated by catheter-based embolization in case of continued sac enlargement. If an endovascular access is not possible, percutaneous targeting of the perfused nidus remains the only option. However, this can be very challenging due to the difficult access and deep puncture with risk of organ perforation and bleeding. Innovative targeting techniques such as robotics may provide a promising option for safe and successful targeting.
Methods
In nine consecutive patients, percutaneous embolization of type II endoleaks was performed using a table-mounted micro-robotic targeting platform. The needle path from the skin entry to the perfused nidus was planned based on the C-arm CT image data in the angio-suite. Entry point and path angle were aligned using the joystick-operated micro-robotic system under fluoroscopic control, and the coaxial needle was introduced until the target point within the perfused nidus was reached.
Results
All punctures were successful, and there were no puncture-related complications. The pre-operative C-arm CT was executed in 11–15 s, and pathway planning required 2–3 min. The robotic setup and sterile draping were performed in 1–2 min, and the alignment to the surgical plan took no longer than 30 s.
Conclusion
Due to the small size, the micro-robotic platform seamlessly integrated into the routine clinical workflow in the angio-suite. It offered significant benefits to the planning and safe execution of double-angulated deeply localized targets, such as type II endoleaks.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aneurysms</subject><subject>Aorta</subject><subject>Aortic Aneurysm, Abdominal - surgery</subject><subject>Blood flow</subject><subject>Computed tomography</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Embolization</subject><subject>Embolization, Therapeutic - methods</subject><subject>Endoleak - etiology</subject><subject>Endovascular Procedures - methods</subject><subject>Female</subject><subject>Health Informatics</subject><subject>Humans</subject><subject>Imaging</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Needles</subject><subject>Original</subject><subject>Original Article</subject><subject>Pattern Recognition and Graphics</subject><subject>Perforation</subject><subject>Radiology</subject><subject>Robot control</subject><subject>Robotic Surgical Procedures - methods</subject><subject>Robotics</subject><subject>Robotics - methods</subject><subject>Surgery</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Treatment Outcome</subject><subject>Vision</subject><subject>Workflow</subject><issn>1861-6429</issn><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUuPFCEUhYnROGPrH3BhSNy4QXk_VsZMfHTSxo2uCU1RNYzV0AI1Sf97GWscRxeuILnfPXDOAeA5wa8JxupNJURwjTDlCDNiBDo9AOdES4Ikp-bhvfsZeFLrFcZcKCYegzOmNSFc83Ow-xx9yajkfW7Rw2MofmkuhbxU2FyZQotpgnmE7XQMcLuFIQ15Du57hTHBdhmgS1PMqC6xhafg0ejmGp7dnhvw7cP7rxef0O7Lx-3Fux3yTMiGlPED3zOBKVFmHDQNmI-SKhckY7zbEfuRUyK5IIM3g9HGODVqb5iSLAyMbcDbVfe47A9h8CG14mZ7LPHgyslmF-3fkxQv7ZSvLSGMGsFuFF7dKpT8Ywm12UOsPszzat0yLKmgSve8NuDlP-hVXkrq_jplepJSadopulI9zVpLGO9-Q7C9acuubdluz_5qy5760ov7Pu5WftfTAbYCtY_SFMqft_8j-xOsj6BJ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Widmann, Gerlig</creator><creator>Deeg, Johannes</creator><creator>Frech, Andreas</creator><creator>Klocker, Josef</creator><creator>Feuchtner, Gudrun</creator><creator>Freund, Martin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7255-0672</orcidid></search><sort><creationdate>20240801</creationdate><title>Micro-robotic percutaneous targeting of type II endoleaks in the angio-suite</title><author>Widmann, Gerlig ; Deeg, Johannes ; Frech, Andreas ; Klocker, Josef ; Feuchtner, Gudrun ; Freund, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-79cd4b3502179fd82e04f627ae63340245bf4216451dc9d9899a7f8c93763ed33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aneurysms</topic><topic>Aorta</topic><topic>Aortic Aneurysm, Abdominal - surgery</topic><topic>Blood flow</topic><topic>Computed tomography</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Embolization</topic><topic>Embolization, Therapeutic - methods</topic><topic>Endoleak - etiology</topic><topic>Endovascular Procedures - methods</topic><topic>Female</topic><topic>Health Informatics</topic><topic>Humans</topic><topic>Imaging</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Needles</topic><topic>Original</topic><topic>Original Article</topic><topic>Pattern Recognition and Graphics</topic><topic>Perforation</topic><topic>Radiology</topic><topic>Robot control</topic><topic>Robotic Surgical Procedures - methods</topic><topic>Robotics</topic><topic>Robotics - methods</topic><topic>Surgery</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Treatment Outcome</topic><topic>Vision</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Widmann, Gerlig</creatorcontrib><creatorcontrib>Deeg, Johannes</creatorcontrib><creatorcontrib>Frech, Andreas</creatorcontrib><creatorcontrib>Klocker, Josef</creatorcontrib><creatorcontrib>Feuchtner, Gudrun</creatorcontrib><creatorcontrib>Freund, Martin</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Widmann, Gerlig</au><au>Deeg, Johannes</au><au>Frech, Andreas</au><au>Klocker, Josef</au><au>Feuchtner, Gudrun</au><au>Freund, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro-robotic percutaneous targeting of type II endoleaks in the angio-suite</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>19</volume><issue>8</issue><spage>1489</spage><epage>1494</epage><pages>1489-1494</pages><issn>1861-6429</issn><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose
Endovascular aneurysm repair has emerged as the standard therapy for abdominal aortic aneurysms. In 9–30% of cases, retrograde filling of the aneurysm sac through patent branch arteries may result in persistence of blood flow outside the graft and within the aneurysm sac. This condition is called an endoleak type II, which may be treated by catheter-based embolization in case of continued sac enlargement. If an endovascular access is not possible, percutaneous targeting of the perfused nidus remains the only option. However, this can be very challenging due to the difficult access and deep puncture with risk of organ perforation and bleeding. Innovative targeting techniques such as robotics may provide a promising option for safe and successful targeting.
Methods
In nine consecutive patients, percutaneous embolization of type II endoleaks was performed using a table-mounted micro-robotic targeting platform. The needle path from the skin entry to the perfused nidus was planned based on the C-arm CT image data in the angio-suite. Entry point and path angle were aligned using the joystick-operated micro-robotic system under fluoroscopic control, and the coaxial needle was introduced until the target point within the perfused nidus was reached.
Results
All punctures were successful, and there were no puncture-related complications. The pre-operative C-arm CT was executed in 11–15 s, and pathway planning required 2–3 min. The robotic setup and sterile draping were performed in 1–2 min, and the alignment to the surgical plan took no longer than 30 s.
Conclusion
Due to the small size, the micro-robotic platform seamlessly integrated into the routine clinical workflow in the angio-suite. It offered significant benefits to the planning and safe execution of double-angulated deeply localized targets, such as type II endoleaks.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38811484</pmid><doi>10.1007/s11548-024-03195-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7255-0672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-6429 |
ispartof | International journal for computer assisted radiology and surgery, 2024-08, Vol.19 (8), p.1489-1494 |
issn | 1861-6429 1861-6410 1861-6429 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11329533 |
source | Springer Link |
subjects | Aged Aged, 80 and over Aneurysms Aorta Aortic Aneurysm, Abdominal - surgery Blood flow Computed tomography Computer Imaging Computer Science Embolization Embolization, Therapeutic - methods Endoleak - etiology Endovascular Procedures - methods Female Health Informatics Humans Imaging Male Medicine Medicine & Public Health Needles Original Original Article Pattern Recognition and Graphics Perforation Radiology Robot control Robotic Surgical Procedures - methods Robotics Robotics - methods Surgery Tomography, X-Ray Computed - methods Treatment Outcome Vision Workflow |
title | Micro-robotic percutaneous targeting of type II endoleaks in the angio-suite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-robotic%20percutaneous%20targeting%20of%20type%20II%20endoleaks%20in%20the%20angio-suite&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Widmann,%20Gerlig&rft.date=2024-08-01&rft.volume=19&rft.issue=8&rft.spage=1489&rft.epage=1494&rft.pages=1489-1494&rft.issn=1861-6429&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-024-03195-y&rft_dat=%3Cproquest_pubme%3E3093886782%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-79cd4b3502179fd82e04f627ae63340245bf4216451dc9d9899a7f8c93763ed33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093886782&rft_id=info:pmid/38811484&rfr_iscdi=true |