Loading…
Detection of low-concentration heavy metal exploiting Tamm resonance in a porous TiO2 photonic crystal
The detection of heavy metal ions, particularly Hg2+, has gained significant attention due to their severe adverse effects on human health and ecosystems. Conventional methods for monitoring these metals in freshwater often suffer from limitations in sensitivity, accuracy, and cost-effectiveness. Th...
Saved in:
Published in: | RSC advances 2024-08, Vol.14 (36), p.26050-26058 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 26058 |
container_issue | 36 |
container_start_page | 26050 |
container_title | RSC advances |
container_volume | 14 |
creator | Elsayed, Asmaa M Ahmed, Ashour M Aly, Arafa H Eissa, M F Tammam, M T |
description | The detection of heavy metal ions, particularly Hg2+, has gained significant attention due to their severe adverse effects on human health and ecosystems. Conventional methods for monitoring these metals in freshwater often suffer from limitations in sensitivity, accuracy, and cost-effectiveness. This work introduces a novel heavy metal sensor based on Tamm resonance within a one-dimensional (1D) porous TiO2 photonic crystal structure. The sensor design includes a prism, a silver (Ag) layer, a cavity, and a ternary multilayer porous TiO2 layer. Reflectance spectra are analyzed using the transfer matrix method. A key aspect of this study is the optimization of sensor performance, which involves adjusting the thicknesses of all layers and the porosity of the multilayer porous TiO2. This optimization strategy is critical for achieving high sensitivity. The results demonstrate that the optimized sensor exhibits a high sensitivity of 0.045 nm ppm−1 for Hg2+ solutions. This sensitivity arises from the effective integration of Tamm resonance with the properties of the porous TiO2 photonic crystal. The proposed structure shows great potential for applications in heavy metal sensing, especially for detecting Hg2+ ion contamination in drinking water with high sensitivity and accuracy. In addition to its high performance, the photonic crystal sensor offers extended lifetime, rapid measurement capabilities, cost-effectiveness, and potential for integration into compact devices, making it a promising solution for environmental monitoring and water quality assessment. |
doi_str_mv | 10.1039/d4ra05116e |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11331580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098121767</sourcerecordid><originalsourceid>FETCH-LOGICAL-p202t-9f5723cce1e1fd3b1449234a1130d8a80513bc61913bf61134ca6e1529a31d003</originalsourceid><addsrcrecordid>eNpdj81OwzAQhC0EElXphSewxIVLwGs7bnxCqPxKSL2Uc-Q6TusqsYOdFPr2uLQHYC-zmp0d6UPoEsgNECZvKx4UyQGEOUEjSrjIKBHy9Nd-jiYxbkgakQMVMEL1g-mN7q132Ne48Z-Z9k4b1wf1Y66N2u5wa3rVYPPVNd721q3wQrUtDiZ6p1IaW4cV7nzwQ8QLO6e4W_veO6uxDruYfi_QWa2aaCZHHaP3p8fF7CV7mz-_zu7fso4S2meyzqeUaW3AQF2xJXAuKeMKgJGqUEWiY0stQCapRXK5VsJATqViUBHCxuju0NsNy9ZUB5Cm7IJtVdiVXtny78XZdbny2zJ1MciLfcP1sSH4j8HEvmxt1KZplDMJr2RE8oJyymSKXv2LbvwQXOLbpwqgMBVT9g2zOH3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098121767</pqid></control><display><type>article</type><title>Detection of low-concentration heavy metal exploiting Tamm resonance in a porous TiO2 photonic crystal</title><source>Open Access: PubMed Central</source><creator>Elsayed, Asmaa M ; Ahmed, Ashour M ; Aly, Arafa H ; Eissa, M F ; Tammam, M T</creator><creatorcontrib>Elsayed, Asmaa M ; Ahmed, Ashour M ; Aly, Arafa H ; Eissa, M F ; Tammam, M T</creatorcontrib><description>The detection of heavy metal ions, particularly Hg2+, has gained significant attention due to their severe adverse effects on human health and ecosystems. Conventional methods for monitoring these metals in freshwater often suffer from limitations in sensitivity, accuracy, and cost-effectiveness. This work introduces a novel heavy metal sensor based on Tamm resonance within a one-dimensional (1D) porous TiO2 photonic crystal structure. The sensor design includes a prism, a silver (Ag) layer, a cavity, and a ternary multilayer porous TiO2 layer. Reflectance spectra are analyzed using the transfer matrix method. A key aspect of this study is the optimization of sensor performance, which involves adjusting the thicknesses of all layers and the porosity of the multilayer porous TiO2. This optimization strategy is critical for achieving high sensitivity. The results demonstrate that the optimized sensor exhibits a high sensitivity of 0.045 nm ppm−1 for Hg2+ solutions. This sensitivity arises from the effective integration of Tamm resonance with the properties of the porous TiO2 photonic crystal. The proposed structure shows great potential for applications in heavy metal sensing, especially for detecting Hg2+ ion contamination in drinking water with high sensitivity and accuracy. In addition to its high performance, the photonic crystal sensor offers extended lifetime, rapid measurement capabilities, cost-effectiveness, and potential for integration into compact devices, making it a promising solution for environmental monitoring and water quality assessment.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra05116e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Cost analysis ; Cost effectiveness ; Crystal structure ; Drinking water ; Environmental monitoring ; Heavy metals ; Matrix methods ; Mercury (metal) ; Multilayers ; Optimization ; Photonic crystals ; Porous media ; Quality assessment ; Resonance ; Sensitivity analysis ; Sensors ; Silver ; Spectral sensitivity ; Thickness ; Titanium dioxide ; Transfer matrices ; Water quality</subject><ispartof>RSC advances, 2024-08, Vol.14 (36), p.26050-26058</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331580/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331580/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Elsayed, Asmaa M</creatorcontrib><creatorcontrib>Ahmed, Ashour M</creatorcontrib><creatorcontrib>Aly, Arafa H</creatorcontrib><creatorcontrib>Eissa, M F</creatorcontrib><creatorcontrib>Tammam, M T</creatorcontrib><title>Detection of low-concentration heavy metal exploiting Tamm resonance in a porous TiO2 photonic crystal</title><title>RSC advances</title><description>The detection of heavy metal ions, particularly Hg2+, has gained significant attention due to their severe adverse effects on human health and ecosystems. Conventional methods for monitoring these metals in freshwater often suffer from limitations in sensitivity, accuracy, and cost-effectiveness. This work introduces a novel heavy metal sensor based on Tamm resonance within a one-dimensional (1D) porous TiO2 photonic crystal structure. The sensor design includes a prism, a silver (Ag) layer, a cavity, and a ternary multilayer porous TiO2 layer. Reflectance spectra are analyzed using the transfer matrix method. A key aspect of this study is the optimization of sensor performance, which involves adjusting the thicknesses of all layers and the porosity of the multilayer porous TiO2. This optimization strategy is critical for achieving high sensitivity. The results demonstrate that the optimized sensor exhibits a high sensitivity of 0.045 nm ppm−1 for Hg2+ solutions. This sensitivity arises from the effective integration of Tamm resonance with the properties of the porous TiO2 photonic crystal. The proposed structure shows great potential for applications in heavy metal sensing, especially for detecting Hg2+ ion contamination in drinking water with high sensitivity and accuracy. In addition to its high performance, the photonic crystal sensor offers extended lifetime, rapid measurement capabilities, cost-effectiveness, and potential for integration into compact devices, making it a promising solution for environmental monitoring and water quality assessment.</description><subject>Chemistry</subject><subject>Cost analysis</subject><subject>Cost effectiveness</subject><subject>Crystal structure</subject><subject>Drinking water</subject><subject>Environmental monitoring</subject><subject>Heavy metals</subject><subject>Matrix methods</subject><subject>Mercury (metal)</subject><subject>Multilayers</subject><subject>Optimization</subject><subject>Photonic crystals</subject><subject>Porous media</subject><subject>Quality assessment</subject><subject>Resonance</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Silver</subject><subject>Spectral sensitivity</subject><subject>Thickness</subject><subject>Titanium dioxide</subject><subject>Transfer matrices</subject><subject>Water quality</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdj81OwzAQhC0EElXphSewxIVLwGs7bnxCqPxKSL2Uc-Q6TusqsYOdFPr2uLQHYC-zmp0d6UPoEsgNECZvKx4UyQGEOUEjSrjIKBHy9Nd-jiYxbkgakQMVMEL1g-mN7q132Ne48Z-Z9k4b1wf1Y66N2u5wa3rVYPPVNd721q3wQrUtDiZ6p1IaW4cV7nzwQ8QLO6e4W_veO6uxDruYfi_QWa2aaCZHHaP3p8fF7CV7mz-_zu7fso4S2meyzqeUaW3AQF2xJXAuKeMKgJGqUEWiY0stQCapRXK5VsJATqViUBHCxuju0NsNy9ZUB5Cm7IJtVdiVXtny78XZdbny2zJ1MciLfcP1sSH4j8HEvmxt1KZplDMJr2RE8oJyymSKXv2LbvwQXOLbpwqgMBVT9g2zOH3g</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>Elsayed, Asmaa M</creator><creator>Ahmed, Ashour M</creator><creator>Aly, Arafa H</creator><creator>Eissa, M F</creator><creator>Tammam, M T</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240816</creationdate><title>Detection of low-concentration heavy metal exploiting Tamm resonance in a porous TiO2 photonic crystal</title><author>Elsayed, Asmaa M ; Ahmed, Ashour M ; Aly, Arafa H ; Eissa, M F ; Tammam, M T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p202t-9f5723cce1e1fd3b1449234a1130d8a80513bc61913bf61134ca6e1529a31d003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><topic>Cost analysis</topic><topic>Cost effectiveness</topic><topic>Crystal structure</topic><topic>Drinking water</topic><topic>Environmental monitoring</topic><topic>Heavy metals</topic><topic>Matrix methods</topic><topic>Mercury (metal)</topic><topic>Multilayers</topic><topic>Optimization</topic><topic>Photonic crystals</topic><topic>Porous media</topic><topic>Quality assessment</topic><topic>Resonance</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Silver</topic><topic>Spectral sensitivity</topic><topic>Thickness</topic><topic>Titanium dioxide</topic><topic>Transfer matrices</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elsayed, Asmaa M</creatorcontrib><creatorcontrib>Ahmed, Ashour M</creatorcontrib><creatorcontrib>Aly, Arafa H</creatorcontrib><creatorcontrib>Eissa, M F</creatorcontrib><creatorcontrib>Tammam, M T</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elsayed, Asmaa M</au><au>Ahmed, Ashour M</au><au>Aly, Arafa H</au><au>Eissa, M F</au><au>Tammam, M T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of low-concentration heavy metal exploiting Tamm resonance in a porous TiO2 photonic crystal</atitle><jtitle>RSC advances</jtitle><date>2024-08-16</date><risdate>2024</risdate><volume>14</volume><issue>36</issue><spage>26050</spage><epage>26058</epage><pages>26050-26058</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>The detection of heavy metal ions, particularly Hg2+, has gained significant attention due to their severe adverse effects on human health and ecosystems. Conventional methods for monitoring these metals in freshwater often suffer from limitations in sensitivity, accuracy, and cost-effectiveness. This work introduces a novel heavy metal sensor based on Tamm resonance within a one-dimensional (1D) porous TiO2 photonic crystal structure. The sensor design includes a prism, a silver (Ag) layer, a cavity, and a ternary multilayer porous TiO2 layer. Reflectance spectra are analyzed using the transfer matrix method. A key aspect of this study is the optimization of sensor performance, which involves adjusting the thicknesses of all layers and the porosity of the multilayer porous TiO2. This optimization strategy is critical for achieving high sensitivity. The results demonstrate that the optimized sensor exhibits a high sensitivity of 0.045 nm ppm−1 for Hg2+ solutions. This sensitivity arises from the effective integration of Tamm resonance with the properties of the porous TiO2 photonic crystal. The proposed structure shows great potential for applications in heavy metal sensing, especially for detecting Hg2+ ion contamination in drinking water with high sensitivity and accuracy. In addition to its high performance, the photonic crystal sensor offers extended lifetime, rapid measurement capabilities, cost-effectiveness, and potential for integration into compact devices, making it a promising solution for environmental monitoring and water quality assessment.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ra05116e</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2024-08, Vol.14 (36), p.26050-26058 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11331580 |
source | Open Access: PubMed Central |
subjects | Chemistry Cost analysis Cost effectiveness Crystal structure Drinking water Environmental monitoring Heavy metals Matrix methods Mercury (metal) Multilayers Optimization Photonic crystals Porous media Quality assessment Resonance Sensitivity analysis Sensors Silver Spectral sensitivity Thickness Titanium dioxide Transfer matrices Water quality |
title | Detection of low-concentration heavy metal exploiting Tamm resonance in a porous TiO2 photonic crystal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20low-concentration%20heavy%20metal%20exploiting%20Tamm%20resonance%20in%20a%20porous%20TiO2%20photonic%20crystal&rft.jtitle=RSC%20advances&rft.au=Elsayed,%20Asmaa%20M&rft.date=2024-08-16&rft.volume=14&rft.issue=36&rft.spage=26050&rft.epage=26058&rft.pages=26050-26058&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra05116e&rft_dat=%3Cproquest_pubme%3E3098121767%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p202t-9f5723cce1e1fd3b1449234a1130d8a80513bc61913bf61134ca6e1529a31d003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098121767&rft_id=info:pmid/&rfr_iscdi=true |