Loading…

Detection of low-concentration heavy metal exploiting Tamm resonance in a porous TiO2 photonic crystal

The detection of heavy metal ions, particularly Hg2+, has gained significant attention due to their severe adverse effects on human health and ecosystems. Conventional methods for monitoring these metals in freshwater often suffer from limitations in sensitivity, accuracy, and cost-effectiveness. Th...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2024-08, Vol.14 (36), p.26050-26058
Main Authors: Elsayed, Asmaa M, Ahmed, Ashour M, Aly, Arafa H, Eissa, M F, Tammam, M T
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 26058
container_issue 36
container_start_page 26050
container_title RSC advances
container_volume 14
creator Elsayed, Asmaa M
Ahmed, Ashour M
Aly, Arafa H
Eissa, M F
Tammam, M T
description The detection of heavy metal ions, particularly Hg2+, has gained significant attention due to their severe adverse effects on human health and ecosystems. Conventional methods for monitoring these metals in freshwater often suffer from limitations in sensitivity, accuracy, and cost-effectiveness. This work introduces a novel heavy metal sensor based on Tamm resonance within a one-dimensional (1D) porous TiO2 photonic crystal structure. The sensor design includes a prism, a silver (Ag) layer, a cavity, and a ternary multilayer porous TiO2 layer. Reflectance spectra are analyzed using the transfer matrix method. A key aspect of this study is the optimization of sensor performance, which involves adjusting the thicknesses of all layers and the porosity of the multilayer porous TiO2. This optimization strategy is critical for achieving high sensitivity. The results demonstrate that the optimized sensor exhibits a high sensitivity of 0.045 nm ppm−1 for Hg2+ solutions. This sensitivity arises from the effective integration of Tamm resonance with the properties of the porous TiO2 photonic crystal. The proposed structure shows great potential for applications in heavy metal sensing, especially for detecting Hg2+ ion contamination in drinking water with high sensitivity and accuracy. In addition to its high performance, the photonic crystal sensor offers extended lifetime, rapid measurement capabilities, cost-effectiveness, and potential for integration into compact devices, making it a promising solution for environmental monitoring and water quality assessment.
doi_str_mv 10.1039/d4ra05116e
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11331580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098121767</sourcerecordid><originalsourceid>FETCH-LOGICAL-p202t-9f5723cce1e1fd3b1449234a1130d8a80513bc61913bf61134ca6e1529a31d003</originalsourceid><addsrcrecordid>eNpdj81OwzAQhC0EElXphSewxIVLwGs7bnxCqPxKSL2Uc-Q6TusqsYOdFPr2uLQHYC-zmp0d6UPoEsgNECZvKx4UyQGEOUEjSrjIKBHy9Nd-jiYxbkgakQMVMEL1g-mN7q132Ne48Z-Z9k4b1wf1Y66N2u5wa3rVYPPVNd721q3wQrUtDiZ6p1IaW4cV7nzwQ8QLO6e4W_veO6uxDruYfi_QWa2aaCZHHaP3p8fF7CV7mz-_zu7fso4S2meyzqeUaW3AQF2xJXAuKeMKgJGqUEWiY0stQCapRXK5VsJATqViUBHCxuju0NsNy9ZUB5Cm7IJtVdiVXtny78XZdbny2zJ1MciLfcP1sSH4j8HEvmxt1KZplDMJr2RE8oJyymSKXv2LbvwQXOLbpwqgMBVT9g2zOH3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098121767</pqid></control><display><type>article</type><title>Detection of low-concentration heavy metal exploiting Tamm resonance in a porous TiO2 photonic crystal</title><source>Open Access: PubMed Central</source><creator>Elsayed, Asmaa M ; Ahmed, Ashour M ; Aly, Arafa H ; Eissa, M F ; Tammam, M T</creator><creatorcontrib>Elsayed, Asmaa M ; Ahmed, Ashour M ; Aly, Arafa H ; Eissa, M F ; Tammam, M T</creatorcontrib><description>The detection of heavy metal ions, particularly Hg2+, has gained significant attention due to their severe adverse effects on human health and ecosystems. Conventional methods for monitoring these metals in freshwater often suffer from limitations in sensitivity, accuracy, and cost-effectiveness. This work introduces a novel heavy metal sensor based on Tamm resonance within a one-dimensional (1D) porous TiO2 photonic crystal structure. The sensor design includes a prism, a silver (Ag) layer, a cavity, and a ternary multilayer porous TiO2 layer. Reflectance spectra are analyzed using the transfer matrix method. A key aspect of this study is the optimization of sensor performance, which involves adjusting the thicknesses of all layers and the porosity of the multilayer porous TiO2. This optimization strategy is critical for achieving high sensitivity. The results demonstrate that the optimized sensor exhibits a high sensitivity of 0.045 nm ppm−1 for Hg2+ solutions. This sensitivity arises from the effective integration of Tamm resonance with the properties of the porous TiO2 photonic crystal. The proposed structure shows great potential for applications in heavy metal sensing, especially for detecting Hg2+ ion contamination in drinking water with high sensitivity and accuracy. In addition to its high performance, the photonic crystal sensor offers extended lifetime, rapid measurement capabilities, cost-effectiveness, and potential for integration into compact devices, making it a promising solution for environmental monitoring and water quality assessment.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra05116e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Cost analysis ; Cost effectiveness ; Crystal structure ; Drinking water ; Environmental monitoring ; Heavy metals ; Matrix methods ; Mercury (metal) ; Multilayers ; Optimization ; Photonic crystals ; Porous media ; Quality assessment ; Resonance ; Sensitivity analysis ; Sensors ; Silver ; Spectral sensitivity ; Thickness ; Titanium dioxide ; Transfer matrices ; Water quality</subject><ispartof>RSC advances, 2024-08, Vol.14 (36), p.26050-26058</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331580/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331580/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Elsayed, Asmaa M</creatorcontrib><creatorcontrib>Ahmed, Ashour M</creatorcontrib><creatorcontrib>Aly, Arafa H</creatorcontrib><creatorcontrib>Eissa, M F</creatorcontrib><creatorcontrib>Tammam, M T</creatorcontrib><title>Detection of low-concentration heavy metal exploiting Tamm resonance in a porous TiO2 photonic crystal</title><title>RSC advances</title><description>The detection of heavy metal ions, particularly Hg2+, has gained significant attention due to their severe adverse effects on human health and ecosystems. Conventional methods for monitoring these metals in freshwater often suffer from limitations in sensitivity, accuracy, and cost-effectiveness. This work introduces a novel heavy metal sensor based on Tamm resonance within a one-dimensional (1D) porous TiO2 photonic crystal structure. The sensor design includes a prism, a silver (Ag) layer, a cavity, and a ternary multilayer porous TiO2 layer. Reflectance spectra are analyzed using the transfer matrix method. A key aspect of this study is the optimization of sensor performance, which involves adjusting the thicknesses of all layers and the porosity of the multilayer porous TiO2. This optimization strategy is critical for achieving high sensitivity. The results demonstrate that the optimized sensor exhibits a high sensitivity of 0.045 nm ppm−1 for Hg2+ solutions. This sensitivity arises from the effective integration of Tamm resonance with the properties of the porous TiO2 photonic crystal. The proposed structure shows great potential for applications in heavy metal sensing, especially for detecting Hg2+ ion contamination in drinking water with high sensitivity and accuracy. In addition to its high performance, the photonic crystal sensor offers extended lifetime, rapid measurement capabilities, cost-effectiveness, and potential for integration into compact devices, making it a promising solution for environmental monitoring and water quality assessment.</description><subject>Chemistry</subject><subject>Cost analysis</subject><subject>Cost effectiveness</subject><subject>Crystal structure</subject><subject>Drinking water</subject><subject>Environmental monitoring</subject><subject>Heavy metals</subject><subject>Matrix methods</subject><subject>Mercury (metal)</subject><subject>Multilayers</subject><subject>Optimization</subject><subject>Photonic crystals</subject><subject>Porous media</subject><subject>Quality assessment</subject><subject>Resonance</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Silver</subject><subject>Spectral sensitivity</subject><subject>Thickness</subject><subject>Titanium dioxide</subject><subject>Transfer matrices</subject><subject>Water quality</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdj81OwzAQhC0EElXphSewxIVLwGs7bnxCqPxKSL2Uc-Q6TusqsYOdFPr2uLQHYC-zmp0d6UPoEsgNECZvKx4UyQGEOUEjSrjIKBHy9Nd-jiYxbkgakQMVMEL1g-mN7q132Ne48Z-Z9k4b1wf1Y66N2u5wa3rVYPPVNd721q3wQrUtDiZ6p1IaW4cV7nzwQ8QLO6e4W_veO6uxDruYfi_QWa2aaCZHHaP3p8fF7CV7mz-_zu7fso4S2meyzqeUaW3AQF2xJXAuKeMKgJGqUEWiY0stQCapRXK5VsJATqViUBHCxuju0NsNy9ZUB5Cm7IJtVdiVXtny78XZdbny2zJ1MciLfcP1sSH4j8HEvmxt1KZplDMJr2RE8oJyymSKXv2LbvwQXOLbpwqgMBVT9g2zOH3g</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>Elsayed, Asmaa M</creator><creator>Ahmed, Ashour M</creator><creator>Aly, Arafa H</creator><creator>Eissa, M F</creator><creator>Tammam, M T</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240816</creationdate><title>Detection of low-concentration heavy metal exploiting Tamm resonance in a porous TiO2 photonic crystal</title><author>Elsayed, Asmaa M ; Ahmed, Ashour M ; Aly, Arafa H ; Eissa, M F ; Tammam, M T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p202t-9f5723cce1e1fd3b1449234a1130d8a80513bc61913bf61134ca6e1529a31d003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><topic>Cost analysis</topic><topic>Cost effectiveness</topic><topic>Crystal structure</topic><topic>Drinking water</topic><topic>Environmental monitoring</topic><topic>Heavy metals</topic><topic>Matrix methods</topic><topic>Mercury (metal)</topic><topic>Multilayers</topic><topic>Optimization</topic><topic>Photonic crystals</topic><topic>Porous media</topic><topic>Quality assessment</topic><topic>Resonance</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Silver</topic><topic>Spectral sensitivity</topic><topic>Thickness</topic><topic>Titanium dioxide</topic><topic>Transfer matrices</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elsayed, Asmaa M</creatorcontrib><creatorcontrib>Ahmed, Ashour M</creatorcontrib><creatorcontrib>Aly, Arafa H</creatorcontrib><creatorcontrib>Eissa, M F</creatorcontrib><creatorcontrib>Tammam, M T</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elsayed, Asmaa M</au><au>Ahmed, Ashour M</au><au>Aly, Arafa H</au><au>Eissa, M F</au><au>Tammam, M T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of low-concentration heavy metal exploiting Tamm resonance in a porous TiO2 photonic crystal</atitle><jtitle>RSC advances</jtitle><date>2024-08-16</date><risdate>2024</risdate><volume>14</volume><issue>36</issue><spage>26050</spage><epage>26058</epage><pages>26050-26058</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>The detection of heavy metal ions, particularly Hg2+, has gained significant attention due to their severe adverse effects on human health and ecosystems. Conventional methods for monitoring these metals in freshwater often suffer from limitations in sensitivity, accuracy, and cost-effectiveness. This work introduces a novel heavy metal sensor based on Tamm resonance within a one-dimensional (1D) porous TiO2 photonic crystal structure. The sensor design includes a prism, a silver (Ag) layer, a cavity, and a ternary multilayer porous TiO2 layer. Reflectance spectra are analyzed using the transfer matrix method. A key aspect of this study is the optimization of sensor performance, which involves adjusting the thicknesses of all layers and the porosity of the multilayer porous TiO2. This optimization strategy is critical for achieving high sensitivity. The results demonstrate that the optimized sensor exhibits a high sensitivity of 0.045 nm ppm−1 for Hg2+ solutions. This sensitivity arises from the effective integration of Tamm resonance with the properties of the porous TiO2 photonic crystal. The proposed structure shows great potential for applications in heavy metal sensing, especially for detecting Hg2+ ion contamination in drinking water with high sensitivity and accuracy. In addition to its high performance, the photonic crystal sensor offers extended lifetime, rapid measurement capabilities, cost-effectiveness, and potential for integration into compact devices, making it a promising solution for environmental monitoring and water quality assessment.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ra05116e</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2024-08, Vol.14 (36), p.26050-26058
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11331580
source Open Access: PubMed Central
subjects Chemistry
Cost analysis
Cost effectiveness
Crystal structure
Drinking water
Environmental monitoring
Heavy metals
Matrix methods
Mercury (metal)
Multilayers
Optimization
Photonic crystals
Porous media
Quality assessment
Resonance
Sensitivity analysis
Sensors
Silver
Spectral sensitivity
Thickness
Titanium dioxide
Transfer matrices
Water quality
title Detection of low-concentration heavy metal exploiting Tamm resonance in a porous TiO2 photonic crystal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20low-concentration%20heavy%20metal%20exploiting%20Tamm%20resonance%20in%20a%20porous%20TiO2%20photonic%20crystal&rft.jtitle=RSC%20advances&rft.au=Elsayed,%20Asmaa%20M&rft.date=2024-08-16&rft.volume=14&rft.issue=36&rft.spage=26050&rft.epage=26058&rft.pages=26050-26058&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra05116e&rft_dat=%3Cproquest_pubme%3E3098121767%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p202t-9f5723cce1e1fd3b1449234a1130d8a80513bc61913bf61134ca6e1529a31d003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098121767&rft_id=info:pmid/&rfr_iscdi=true