Loading…
Neuroprotective Effects of VGLUT1 Inhibition in HT22 Cells Overexpressing VGLUT1 Under Oxygen Glucose Deprivation Conditions
Glutamate (Glu) is a major excitatory neurotransmitter in the brain, essential for synaptic plasticity, neuronal activity, and memory formation. However, its dysregulation leads to excitotoxicity, implicated in neurodegenerative diseases and brain ischemia. Vesicular glutamate transporters (VGLUTs)...
Saved in:
Published in: | Neuromolecular medicine 2024-08, Vol.26 (1), p.35 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-p313t-2523ac251725e323196f997e449814c314c37de4b1a0c2f2f69de13c498961813 |
container_end_page | |
container_issue | 1 |
container_start_page | 35 |
container_title | Neuromolecular medicine |
container_volume | 26 |
creator | Pomierny, B. Krzyżanowska, W. Skórkowska, A. Budziszewska, B. Pera, J. |
description | Glutamate (Glu) is a major excitatory neurotransmitter in the brain, essential for synaptic plasticity, neuronal activity, and memory formation. However, its dysregulation leads to excitotoxicity, implicated in neurodegenerative diseases and brain ischemia. Vesicular glutamate transporters (VGLUTs) regulate Glu loading into synaptic vesicles, crucial for maintaining optimal extracellular Glu levels. This study investigates the neuroprotective effects of VGLUT1 inhibition in HT22 cells overexpressing VGLUT1 under oxygen glucose deprivation (OGD) conditions. HT22 cells, a hippocampal neuron model, were transduced with lentiviral vectors to overexpress VGLUT1. Cells were subjected to OGD, with pre-incubation of Chicago Sky Blue 6B (CSB6B), an unspecific VGLUT inhibitor. Cell viability, lactate dehydrogenase (LDH) release, mitochondrial membrane potential, and hypoxia-related protein markers (PARP1, AIF, NLRP3) were assessed. Results indicated that VGLUT1 overexpression increased vulnerability to OGD, evidenced by higher LDH release and reduced cell viability. CSB6B treatment improved cell viability and reduced LDH release in OGD conditions, particularly at 0.1 μM and 1.0 μM concentrations. Moreover, CSB6B preserved mitochondrial membrane potential and decreased levels of PARP1, AIF, and NLRP3 proteins, suggesting neuroprotective effects through mitigating excitotoxicity. This study demonstrates that VGLUT1 inhibition could be a promising therapeutic strategy for ischemic brain injury, warranting further investigation into selective VGLUT1 inhibitors. |
doi_str_mv | 10.1007/s12017-024-08803-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11343943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096665516</sourcerecordid><originalsourceid>FETCH-LOGICAL-p313t-2523ac251725e323196f997e449814c314c37de4b1a0c2f2f69de13c498961813</originalsourceid><addsrcrecordid>eNpdkV1v0zAUhiMEYmPwB7hAlrjhJuDjYyfxFULd6CZV9Kbl1kqTk85Tagc7qTaJH4_bbnxdWD7S--jRsd8sewv8I3BefoogOJQ5FzLnVcUxx2fZOSilc4BSPj_MqHLglTzLXsV4x7kQAPAyO0MNpS4qfp79_EZT8EPwIzWj3RO76ro0ReY79n2-WK-A3bhbu7Gj9Y5Zx65XQrAZ9X1kyz0Fuh8CxWjd9glfu5YCW94_bMmxeT81PhK7pCHYfX2UzLxrj7r4OnvR1X2kN4_3Rbb-erWaXeeL5fxm9mWRDwg45kIJrBuhoBSKUCDootO6JCl1BbLBwylbkhuoeSM60RW6JcAmxbqACvAi-3zyDtNmR21Dbgx1b9JKuzo8GF9b82_i7K3Z-r0BQIlaYjJ8eDQE_2OiOJqdjU36hdqRn6JBrouiUAqKhL7_D73zU3DpfUdKlqVSMlHv_l7p9y5PzSQAT0BMkdtS-KMBbg79m1P_JvVvjv0bxF_kfJ_3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096477554</pqid></control><display><type>article</type><title>Neuroprotective Effects of VGLUT1 Inhibition in HT22 Cells Overexpressing VGLUT1 Under Oxygen Glucose Deprivation Conditions</title><source>Springer Nature</source><creator>Pomierny, B. ; Krzyżanowska, W. ; Skórkowska, A. ; Budziszewska, B. ; Pera, J.</creator><creatorcontrib>Pomierny, B. ; Krzyżanowska, W. ; Skórkowska, A. ; Budziszewska, B. ; Pera, J.</creatorcontrib><description>Glutamate (Glu) is a major excitatory neurotransmitter in the brain, essential for synaptic plasticity, neuronal activity, and memory formation. However, its dysregulation leads to excitotoxicity, implicated in neurodegenerative diseases and brain ischemia. Vesicular glutamate transporters (VGLUTs) regulate Glu loading into synaptic vesicles, crucial for maintaining optimal extracellular Glu levels. This study investigates the neuroprotective effects of VGLUT1 inhibition in HT22 cells overexpressing VGLUT1 under oxygen glucose deprivation (OGD) conditions. HT22 cells, a hippocampal neuron model, were transduced with lentiviral vectors to overexpress VGLUT1. Cells were subjected to OGD, with pre-incubation of Chicago Sky Blue 6B (CSB6B), an unspecific VGLUT inhibitor. Cell viability, lactate dehydrogenase (LDH) release, mitochondrial membrane potential, and hypoxia-related protein markers (PARP1, AIF, NLRP3) were assessed. Results indicated that VGLUT1 overexpression increased vulnerability to OGD, evidenced by higher LDH release and reduced cell viability. CSB6B treatment improved cell viability and reduced LDH release in OGD conditions, particularly at 0.1 μM and 1.0 μM concentrations. Moreover, CSB6B preserved mitochondrial membrane potential and decreased levels of PARP1, AIF, and NLRP3 proteins, suggesting neuroprotective effects through mitigating excitotoxicity. This study demonstrates that VGLUT1 inhibition could be a promising therapeutic strategy for ischemic brain injury, warranting further investigation into selective VGLUT1 inhibitors.</description><identifier>ISSN: 1535-1084</identifier><identifier>ISSN: 1559-1174</identifier><identifier>EISSN: 1559-1174</identifier><identifier>DOI: 10.1007/s12017-024-08803-3</identifier><identifier>PMID: 39179680</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Apoptosis-inducing factor ; Biomedical and Life Sciences ; Biomedicine ; Brain injury ; Brief Report ; Cell culture ; Cell Hypoxia ; Cell Line ; Cell Survival - drug effects ; Cell viability ; Dehydrogenases ; Excitotoxicity ; Glucose ; Glucose - deficiency ; Glucose - metabolism ; Glutamic Acid - metabolism ; Hippocampus ; Hippocampus - cytology ; Hippocampus - metabolism ; Hypoxia ; Internal Medicine ; Ischemia ; L-Lactate dehydrogenase ; L-Lactate Dehydrogenase - metabolism ; Laboratories ; Membrane potential ; Membrane Potential, Mitochondrial - drug effects ; Mice ; Neurodegenerative diseases ; Neurology ; Neurons ; Neurons - drug effects ; Neurons - metabolism ; Neuroplasticity ; Neuroprotection ; Neuroprotective Agents - pharmacology ; Neurosciences ; Oxygen - metabolism ; Plasmids ; Poly(ADP-ribose) polymerase ; Proteins ; Synaptic plasticity ; Synaptic vesicles ; Vesicular Glutamate Transport Protein 1 - biosynthesis ; Vesicular Glutamate Transport Protein 1 - genetics ; Vesicular Glutamate Transport Protein 1 - metabolism ; Vesicular Glutamate Transport Protein 2</subject><ispartof>Neuromolecular medicine, 2024-08, Vol.26 (1), p.35</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p313t-2523ac251725e323196f997e449814c314c37de4b1a0c2f2f69de13c498961813</cites><orcidid>0000-0001-6142-2969 ; 0000-0002-5352-5324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39179680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pomierny, B.</creatorcontrib><creatorcontrib>Krzyżanowska, W.</creatorcontrib><creatorcontrib>Skórkowska, A.</creatorcontrib><creatorcontrib>Budziszewska, B.</creatorcontrib><creatorcontrib>Pera, J.</creatorcontrib><title>Neuroprotective Effects of VGLUT1 Inhibition in HT22 Cells Overexpressing VGLUT1 Under Oxygen Glucose Deprivation Conditions</title><title>Neuromolecular medicine</title><addtitle>Neuromol Med</addtitle><addtitle>Neuromolecular Med</addtitle><description>Glutamate (Glu) is a major excitatory neurotransmitter in the brain, essential for synaptic plasticity, neuronal activity, and memory formation. However, its dysregulation leads to excitotoxicity, implicated in neurodegenerative diseases and brain ischemia. Vesicular glutamate transporters (VGLUTs) regulate Glu loading into synaptic vesicles, crucial for maintaining optimal extracellular Glu levels. This study investigates the neuroprotective effects of VGLUT1 inhibition in HT22 cells overexpressing VGLUT1 under oxygen glucose deprivation (OGD) conditions. HT22 cells, a hippocampal neuron model, were transduced with lentiviral vectors to overexpress VGLUT1. Cells were subjected to OGD, with pre-incubation of Chicago Sky Blue 6B (CSB6B), an unspecific VGLUT inhibitor. Cell viability, lactate dehydrogenase (LDH) release, mitochondrial membrane potential, and hypoxia-related protein markers (PARP1, AIF, NLRP3) were assessed. Results indicated that VGLUT1 overexpression increased vulnerability to OGD, evidenced by higher LDH release and reduced cell viability. CSB6B treatment improved cell viability and reduced LDH release in OGD conditions, particularly at 0.1 μM and 1.0 μM concentrations. Moreover, CSB6B preserved mitochondrial membrane potential and decreased levels of PARP1, AIF, and NLRP3 proteins, suggesting neuroprotective effects through mitigating excitotoxicity. This study demonstrates that VGLUT1 inhibition could be a promising therapeutic strategy for ischemic brain injury, warranting further investigation into selective VGLUT1 inhibitors.</description><subject>Animals</subject><subject>Apoptosis-inducing factor</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain injury</subject><subject>Brief Report</subject><subject>Cell culture</subject><subject>Cell Hypoxia</subject><subject>Cell Line</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Dehydrogenases</subject><subject>Excitotoxicity</subject><subject>Glucose</subject><subject>Glucose - deficiency</subject><subject>Glucose - metabolism</subject><subject>Glutamic Acid - metabolism</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - metabolism</subject><subject>Hypoxia</subject><subject>Internal Medicine</subject><subject>Ischemia</subject><subject>L-Lactate dehydrogenase</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>Laboratories</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Mice</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neuroplasticity</subject><subject>Neuroprotection</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Neurosciences</subject><subject>Oxygen - metabolism</subject><subject>Plasmids</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Proteins</subject><subject>Synaptic plasticity</subject><subject>Synaptic vesicles</subject><subject>Vesicular Glutamate Transport Protein 1 - biosynthesis</subject><subject>Vesicular Glutamate Transport Protein 1 - genetics</subject><subject>Vesicular Glutamate Transport Protein 1 - metabolism</subject><subject>Vesicular Glutamate Transport Protein 2</subject><issn>1535-1084</issn><issn>1559-1174</issn><issn>1559-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkV1v0zAUhiMEYmPwB7hAlrjhJuDjYyfxFULd6CZV9Kbl1kqTk85Tagc7qTaJH4_bbnxdWD7S--jRsd8sewv8I3BefoogOJQ5FzLnVcUxx2fZOSilc4BSPj_MqHLglTzLXsV4x7kQAPAyO0MNpS4qfp79_EZT8EPwIzWj3RO76ro0ReY79n2-WK-A3bhbu7Gj9Y5Zx65XQrAZ9X1kyz0Fuh8CxWjd9glfu5YCW94_bMmxeT81PhK7pCHYfX2UzLxrj7r4OnvR1X2kN4_3Rbb-erWaXeeL5fxm9mWRDwg45kIJrBuhoBSKUCDootO6JCl1BbLBwylbkhuoeSM60RW6JcAmxbqACvAi-3zyDtNmR21Dbgx1b9JKuzo8GF9b82_i7K3Z-r0BQIlaYjJ8eDQE_2OiOJqdjU36hdqRn6JBrouiUAqKhL7_D73zU3DpfUdKlqVSMlHv_l7p9y5PzSQAT0BMkdtS-KMBbg79m1P_JvVvjv0bxF_kfJ_3</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Pomierny, B.</creator><creator>Krzyżanowska, W.</creator><creator>Skórkowska, A.</creator><creator>Budziszewska, B.</creator><creator>Pera, J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6142-2969</orcidid><orcidid>https://orcid.org/0000-0002-5352-5324</orcidid></search><sort><creationdate>20240823</creationdate><title>Neuroprotective Effects of VGLUT1 Inhibition in HT22 Cells Overexpressing VGLUT1 Under Oxygen Glucose Deprivation Conditions</title><author>Pomierny, B. ; Krzyżanowska, W. ; Skórkowska, A. ; Budziszewska, B. ; Pera, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p313t-2523ac251725e323196f997e449814c314c37de4b1a0c2f2f69de13c498961813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Apoptosis-inducing factor</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain injury</topic><topic>Brief Report</topic><topic>Cell culture</topic><topic>Cell Hypoxia</topic><topic>Cell Line</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Dehydrogenases</topic><topic>Excitotoxicity</topic><topic>Glucose</topic><topic>Glucose - deficiency</topic><topic>Glucose - metabolism</topic><topic>Glutamic Acid - metabolism</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - metabolism</topic><topic>Hypoxia</topic><topic>Internal Medicine</topic><topic>Ischemia</topic><topic>L-Lactate dehydrogenase</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>Laboratories</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Mice</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neuroplasticity</topic><topic>Neuroprotection</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Neurosciences</topic><topic>Oxygen - metabolism</topic><topic>Plasmids</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Proteins</topic><topic>Synaptic plasticity</topic><topic>Synaptic vesicles</topic><topic>Vesicular Glutamate Transport Protein 1 - biosynthesis</topic><topic>Vesicular Glutamate Transport Protein 1 - genetics</topic><topic>Vesicular Glutamate Transport Protein 1 - metabolism</topic><topic>Vesicular Glutamate Transport Protein 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pomierny, B.</creatorcontrib><creatorcontrib>Krzyżanowska, W.</creatorcontrib><creatorcontrib>Skórkowska, A.</creatorcontrib><creatorcontrib>Budziszewska, B.</creatorcontrib><creatorcontrib>Pera, J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuromolecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pomierny, B.</au><au>Krzyżanowska, W.</au><au>Skórkowska, A.</au><au>Budziszewska, B.</au><au>Pera, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuroprotective Effects of VGLUT1 Inhibition in HT22 Cells Overexpressing VGLUT1 Under Oxygen Glucose Deprivation Conditions</atitle><jtitle>Neuromolecular medicine</jtitle><stitle>Neuromol Med</stitle><addtitle>Neuromolecular Med</addtitle><date>2024-08-23</date><risdate>2024</risdate><volume>26</volume><issue>1</issue><spage>35</spage><pages>35-</pages><issn>1535-1084</issn><issn>1559-1174</issn><eissn>1559-1174</eissn><abstract>Glutamate (Glu) is a major excitatory neurotransmitter in the brain, essential for synaptic plasticity, neuronal activity, and memory formation. However, its dysregulation leads to excitotoxicity, implicated in neurodegenerative diseases and brain ischemia. Vesicular glutamate transporters (VGLUTs) regulate Glu loading into synaptic vesicles, crucial for maintaining optimal extracellular Glu levels. This study investigates the neuroprotective effects of VGLUT1 inhibition in HT22 cells overexpressing VGLUT1 under oxygen glucose deprivation (OGD) conditions. HT22 cells, a hippocampal neuron model, were transduced with lentiviral vectors to overexpress VGLUT1. Cells were subjected to OGD, with pre-incubation of Chicago Sky Blue 6B (CSB6B), an unspecific VGLUT inhibitor. Cell viability, lactate dehydrogenase (LDH) release, mitochondrial membrane potential, and hypoxia-related protein markers (PARP1, AIF, NLRP3) were assessed. Results indicated that VGLUT1 overexpression increased vulnerability to OGD, evidenced by higher LDH release and reduced cell viability. CSB6B treatment improved cell viability and reduced LDH release in OGD conditions, particularly at 0.1 μM and 1.0 μM concentrations. Moreover, CSB6B preserved mitochondrial membrane potential and decreased levels of PARP1, AIF, and NLRP3 proteins, suggesting neuroprotective effects through mitigating excitotoxicity. This study demonstrates that VGLUT1 inhibition could be a promising therapeutic strategy for ischemic brain injury, warranting further investigation into selective VGLUT1 inhibitors.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39179680</pmid><doi>10.1007/s12017-024-08803-3</doi><orcidid>https://orcid.org/0000-0001-6142-2969</orcidid><orcidid>https://orcid.org/0000-0002-5352-5324</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-1084 |
ispartof | Neuromolecular medicine, 2024-08, Vol.26 (1), p.35 |
issn | 1535-1084 1559-1174 1559-1174 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11343943 |
source | Springer Nature |
subjects | Animals Apoptosis-inducing factor Biomedical and Life Sciences Biomedicine Brain injury Brief Report Cell culture Cell Hypoxia Cell Line Cell Survival - drug effects Cell viability Dehydrogenases Excitotoxicity Glucose Glucose - deficiency Glucose - metabolism Glutamic Acid - metabolism Hippocampus Hippocampus - cytology Hippocampus - metabolism Hypoxia Internal Medicine Ischemia L-Lactate dehydrogenase L-Lactate Dehydrogenase - metabolism Laboratories Membrane potential Membrane Potential, Mitochondrial - drug effects Mice Neurodegenerative diseases Neurology Neurons Neurons - drug effects Neurons - metabolism Neuroplasticity Neuroprotection Neuroprotective Agents - pharmacology Neurosciences Oxygen - metabolism Plasmids Poly(ADP-ribose) polymerase Proteins Synaptic plasticity Synaptic vesicles Vesicular Glutamate Transport Protein 1 - biosynthesis Vesicular Glutamate Transport Protein 1 - genetics Vesicular Glutamate Transport Protein 1 - metabolism Vesicular Glutamate Transport Protein 2 |
title | Neuroprotective Effects of VGLUT1 Inhibition in HT22 Cells Overexpressing VGLUT1 Under Oxygen Glucose Deprivation Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuroprotective%20Effects%20of%20VGLUT1%20Inhibition%20in%20HT22%20Cells%20Overexpressing%20VGLUT1%20Under%20Oxygen%20Glucose%20Deprivation%20Conditions&rft.jtitle=Neuromolecular%20medicine&rft.au=Pomierny,%20B.&rft.date=2024-08-23&rft.volume=26&rft.issue=1&rft.spage=35&rft.pages=35-&rft.issn=1535-1084&rft.eissn=1559-1174&rft_id=info:doi/10.1007/s12017-024-08803-3&rft_dat=%3Cproquest_pubme%3E3096665516%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p313t-2523ac251725e323196f997e449814c314c37de4b1a0c2f2f69de13c498961813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3096477554&rft_id=info:pmid/39179680&rfr_iscdi=true |