Loading…
Biosynthesis of Polyhydroalkanoates Doped with Silver Nanoparticles Using Pseudomonas putida and Pseudomonas aeruginosa for Antibacterial Polymer Applications
In this study, the biosynthesis of polyhydroxyalkanoates (PHAs) was carried out using putida and . These PHAs were produced using reagent-grade glycerol and crude glycerol as the carbon sources. The objective was to compare the production of PHAs and to functionalize these polymers with silver nanop...
Saved in:
Published in: | International journal of molecular sciences 2024-08, Vol.25 (16), p.8996 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the biosynthesis of polyhydroxyalkanoates (PHAs) was carried out using
putida and
. These PHAs were produced using reagent-grade glycerol and crude glycerol as the carbon sources. The objective was to compare the production of PHAs and to functionalize these polymers with silver nanoparticles to provide antibacterial properties for potential biomedical applications. The findings from the physical and chemical analyses confirmed the successful synthesis and extraction of PHAs, achieving comparable yields using both crude glycerol and reagent-grade glycerol as carbon sources across both strains. Approximately 16% higher PHAs production was obtained using
compared to
, and no significant difference was observed in the production rate of PHAs between the two carbon sources used, which means that crude glycerol could be utilized even though it has more impurities. Notably, PHAs functionalized with silver nanoparticles showed improved antibacterial effectiveness, especially those derived from reagent-grade glycerol and the
strain. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms25168996 |