Loading…

Forced-Vibration Characteristics of Bowtie-Shaped Honeycomb Composite Sandwich Panel with Viscoelastic Damping Layer

The incorporation of viscoelastic layers in laminates can markedly enhance the damped dynamic characteristics. This study focuses on integrating viscoelastic layers into the composite facesheet of the bowtie-shaped honeycomb core composite sandwich panel (BHC-CSP). The homogenization of the damped B...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2024-08, Vol.17 (16), p.4067
Main Authors: Miao, Siqi, Zhong, Yifeng, Zhang, Mingtao, Liu, Rong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The incorporation of viscoelastic layers in laminates can markedly enhance the damped dynamic characteristics. This study focuses on integrating viscoelastic layers into the composite facesheet of the bowtie-shaped honeycomb core composite sandwich panel (BHC-CSP). The homogenization of the damped BHC-CSP is performed by employing the variational asymptotic method. Based on the generalized total energy equation, the energy functional of the representative unit cell of the damped BHC-CSP is asymptotically analyzed. The warping function, derived following the principle of minimum potential energy, provides a basis for obtaining the corresponding Euler-Lagrange equation to ascertain the equivalent elastic properties of the damped BHC-CSP. Utilizing the developed two-dimensional equivalent model, the free-vibration characteristics of the damped BHC-CSP are examined across diverse boundary conditions while delving into the impact of an external viscous damping layer on the natural frequency of the damped BHC-CSP. The results reveal that intensified boundary constraints effectively diminish the effective vibration region of the damped BHC-CSP, thereby enhancing its overall stability. The introduction of a PMI foam layer proves effective in adjusting the stiffness and mass distribution of the damped BHC-CSP. Resonance characteristics are explored through frequency and time-domain analyses, highlighting the pivotal roles of the excitation position and receiver point in influencing the displacement and velocity responses. Although the stiffness is improved by incorporating a PMI foam layer, its effect on the damping performance of the damped BHC-CSP is minimal when compared to the T-SW308 foam layer.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17164067