Loading…

Effect of Phosphate-Bridged Monomer on Thermal Oxidative Behavior of Phthalonitrile Thermosets

Phthalonitrile thermosets are known for their excellent mechanical, physico-chemical, and fire-retardant properties, making them attractive for aerospace and mechanical engineering applications. When producing and applying phthalonitrile-based structural parts, it is essential to consider aspects su...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2024-08, Vol.16 (16), p.2239
Main Authors: Lobanova, Marina Sergeevna, Babkin, Alexandr Vladimirovich, Kepman, Alexey Valeryevich, Avdeev, Victor Vasil'evich, Morozov, Oleg Sergeevich, Bulgakov, Boris Anatol'evich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c302t-6d1da7aae526030093004242c1a365c26b517869a0a061933a2508c448ad7bd93
container_end_page
container_issue 16
container_start_page 2239
container_title Polymers
container_volume 16
creator Lobanova, Marina Sergeevna
Babkin, Alexandr Vladimirovich
Kepman, Alexey Valeryevich
Avdeev, Victor Vasil'evich
Morozov, Oleg Sergeevich
Bulgakov, Boris Anatol'evich
description Phthalonitrile thermosets are known for their excellent mechanical, physico-chemical, and fire-retardant properties, making them attractive for aerospace and mechanical engineering applications. When producing and applying phthalonitrile-based structural parts, it is essential to consider aspects such as processability and the long-term stability of the material's properties at high temperatures. In our previous studies, we demonstrated that resins containing phosphate-bridged bisphthalonitrile monomers are easily processable due to their low melting temperature and wide processing window. In this study, we investigated the impact of bis(3-(3,4-dicyanophenoxy)phenyl)phenyl phosphate (PPhPN) monomer content on physico-chemical and mechanical properties, thermal stability, and thermal oxidative stability. This research highlights the importance of conducting long-term thermal oxidative aging studies in addition to thermogravimetric analysis to properly assess the stability of thermosets. The findings indicate that adding less than 15% of PPhPN results in the formation of a crystalline phase, which impairs the resin's processability. Conversely, a high PPhPN content reduces the material's thermal oxidative stability. Therefore, based on mechanical and physico-chemical tests after thermal oxidative aging, it can be concluded that a 10-15% concentration of the phosphate-containing monomer enables easy processability of the phthalonitrile resin and provides excellent long-term thermal oxidative stability at temperatures up to 300 °C, while maintaining a flexural strength exceeding 120 MPa and an elasticity modulus of 4.3 GPa.
doi_str_mv 10.3390/polym16162239
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11359510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098185123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-6d1da7aae526030093004242c1a365c26b517869a0a061933a2508c448ad7bd93</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMoKusevUrBi5dqPpq0OYmKX6DoQa-G2XZqI22zJtlF_71ddpVdB4YZmGdeZngJOWT0VAhNz6au_e6YYopzobfIPqe5SDOh6PZav0fGIXzQITKpFMt3yZ7QnGaZ1Pvk7bqusYyJq5PnxoVpAxHTS2-rd6ySR9e7Dn3i-uSlQd9Bmzx92QqinWNyiQ3MrfPL1dhA63obvW1xCbuAMRyQnRragONVHZHXm-uXq7v04en2_uriIS0F5TFVFasgB0DJFRWU6iEznvGSgVCy5GoiWV4oDRSoYloI4JIWZZYVUOWTSosROV_qTmeTDqsS--ihNVNvO_DfxoE1m5PeNubdzQ1jQmrJ6KBwslLw7nOGIZrOhhLbFnp0s2AE1TrXUgwxIsf_0A838_3w34IqWCEZX1Dpkiq9C8Fj_XcNo2bhntlwb-CP1l_4o3-9Ej-J2JW9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098185123</pqid></control><display><type>article</type><title>Effect of Phosphate-Bridged Monomer on Thermal Oxidative Behavior of Phthalonitrile Thermosets</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Lobanova, Marina Sergeevna ; Babkin, Alexandr Vladimirovich ; Kepman, Alexey Valeryevich ; Avdeev, Victor Vasil'evich ; Morozov, Oleg Sergeevich ; Bulgakov, Boris Anatol'evich</creator><creatorcontrib>Lobanova, Marina Sergeevna ; Babkin, Alexandr Vladimirovich ; Kepman, Alexey Valeryevich ; Avdeev, Victor Vasil'evich ; Morozov, Oleg Sergeevich ; Bulgakov, Boris Anatol'evich</creatorcontrib><description>Phthalonitrile thermosets are known for their excellent mechanical, physico-chemical, and fire-retardant properties, making them attractive for aerospace and mechanical engineering applications. When producing and applying phthalonitrile-based structural parts, it is essential to consider aspects such as processability and the long-term stability of the material's properties at high temperatures. In our previous studies, we demonstrated that resins containing phosphate-bridged bisphthalonitrile monomers are easily processable due to their low melting temperature and wide processing window. In this study, we investigated the impact of bis(3-(3,4-dicyanophenoxy)phenyl)phenyl phosphate (PPhPN) monomer content on physico-chemical and mechanical properties, thermal stability, and thermal oxidative stability. This research highlights the importance of conducting long-term thermal oxidative aging studies in addition to thermogravimetric analysis to properly assess the stability of thermosets. The findings indicate that adding less than 15% of PPhPN results in the formation of a crystalline phase, which impairs the resin's processability. Conversely, a high PPhPN content reduces the material's thermal oxidative stability. Therefore, based on mechanical and physico-chemical tests after thermal oxidative aging, it can be concluded that a 10-15% concentration of the phosphate-containing monomer enables easy processability of the phthalonitrile resin and provides excellent long-term thermal oxidative stability at temperatures up to 300 °C, while maintaining a flexural strength exceeding 120 MPa and an elasticity modulus of 4.3 GPa.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16162239</identifier><identifier>PMID: 39204459</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aerospace engineering ; Aging ; Chemical tests ; Crack propagation ; Curing ; Flame retardants ; Flexural strength ; Heat resistance ; High temperature ; Hydrocarbons ; Mechanical engineering ; Mechanical properties ; Melt temperature ; Monomers ; Oxidation ; Phosphorus ; Polymers ; Resins ; Structural stability ; Temperature ; Thermal stability ; Thermogravimetric analysis</subject><ispartof>Polymers, 2024-08, Vol.16 (16), p.2239</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-6d1da7aae526030093004242c1a365c26b517869a0a061933a2508c448ad7bd93</cites><orcidid>0000-0003-3852-1066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3098185123/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3098185123?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39204459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lobanova, Marina Sergeevna</creatorcontrib><creatorcontrib>Babkin, Alexandr Vladimirovich</creatorcontrib><creatorcontrib>Kepman, Alexey Valeryevich</creatorcontrib><creatorcontrib>Avdeev, Victor Vasil'evich</creatorcontrib><creatorcontrib>Morozov, Oleg Sergeevich</creatorcontrib><creatorcontrib>Bulgakov, Boris Anatol'evich</creatorcontrib><title>Effect of Phosphate-Bridged Monomer on Thermal Oxidative Behavior of Phthalonitrile Thermosets</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Phthalonitrile thermosets are known for their excellent mechanical, physico-chemical, and fire-retardant properties, making them attractive for aerospace and mechanical engineering applications. When producing and applying phthalonitrile-based structural parts, it is essential to consider aspects such as processability and the long-term stability of the material's properties at high temperatures. In our previous studies, we demonstrated that resins containing phosphate-bridged bisphthalonitrile monomers are easily processable due to their low melting temperature and wide processing window. In this study, we investigated the impact of bis(3-(3,4-dicyanophenoxy)phenyl)phenyl phosphate (PPhPN) monomer content on physico-chemical and mechanical properties, thermal stability, and thermal oxidative stability. This research highlights the importance of conducting long-term thermal oxidative aging studies in addition to thermogravimetric analysis to properly assess the stability of thermosets. The findings indicate that adding less than 15% of PPhPN results in the formation of a crystalline phase, which impairs the resin's processability. Conversely, a high PPhPN content reduces the material's thermal oxidative stability. Therefore, based on mechanical and physico-chemical tests after thermal oxidative aging, it can be concluded that a 10-15% concentration of the phosphate-containing monomer enables easy processability of the phthalonitrile resin and provides excellent long-term thermal oxidative stability at temperatures up to 300 °C, while maintaining a flexural strength exceeding 120 MPa and an elasticity modulus of 4.3 GPa.</description><subject>Aerospace engineering</subject><subject>Aging</subject><subject>Chemical tests</subject><subject>Crack propagation</subject><subject>Curing</subject><subject>Flame retardants</subject><subject>Flexural strength</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Hydrocarbons</subject><subject>Mechanical engineering</subject><subject>Mechanical properties</subject><subject>Melt temperature</subject><subject>Monomers</subject><subject>Oxidation</subject><subject>Phosphorus</subject><subject>Polymers</subject><subject>Resins</subject><subject>Structural stability</subject><subject>Temperature</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1LxDAQhoMoKusevUrBi5dqPpq0OYmKX6DoQa-G2XZqI22zJtlF_71ddpVdB4YZmGdeZngJOWT0VAhNz6au_e6YYopzobfIPqe5SDOh6PZav0fGIXzQITKpFMt3yZ7QnGaZ1Pvk7bqusYyJq5PnxoVpAxHTS2-rd6ySR9e7Dn3i-uSlQd9Bmzx92QqinWNyiQ3MrfPL1dhA63obvW1xCbuAMRyQnRragONVHZHXm-uXq7v04en2_uriIS0F5TFVFasgB0DJFRWU6iEznvGSgVCy5GoiWV4oDRSoYloI4JIWZZYVUOWTSosROV_qTmeTDqsS--ihNVNvO_DfxoE1m5PeNubdzQ1jQmrJ6KBwslLw7nOGIZrOhhLbFnp0s2AE1TrXUgwxIsf_0A838_3w34IqWCEZX1Dpkiq9C8Fj_XcNo2bhntlwb-CP1l_4o3-9Ej-J2JW9</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Lobanova, Marina Sergeevna</creator><creator>Babkin, Alexandr Vladimirovich</creator><creator>Kepman, Alexey Valeryevich</creator><creator>Avdeev, Victor Vasil'evich</creator><creator>Morozov, Oleg Sergeevich</creator><creator>Bulgakov, Boris Anatol'evich</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3852-1066</orcidid></search><sort><creationdate>20240807</creationdate><title>Effect of Phosphate-Bridged Monomer on Thermal Oxidative Behavior of Phthalonitrile Thermosets</title><author>Lobanova, Marina Sergeevna ; Babkin, Alexandr Vladimirovich ; Kepman, Alexey Valeryevich ; Avdeev, Victor Vasil'evich ; Morozov, Oleg Sergeevich ; Bulgakov, Boris Anatol'evich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-6d1da7aae526030093004242c1a365c26b517869a0a061933a2508c448ad7bd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace engineering</topic><topic>Aging</topic><topic>Chemical tests</topic><topic>Crack propagation</topic><topic>Curing</topic><topic>Flame retardants</topic><topic>Flexural strength</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Hydrocarbons</topic><topic>Mechanical engineering</topic><topic>Mechanical properties</topic><topic>Melt temperature</topic><topic>Monomers</topic><topic>Oxidation</topic><topic>Phosphorus</topic><topic>Polymers</topic><topic>Resins</topic><topic>Structural stability</topic><topic>Temperature</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobanova, Marina Sergeevna</creatorcontrib><creatorcontrib>Babkin, Alexandr Vladimirovich</creatorcontrib><creatorcontrib>Kepman, Alexey Valeryevich</creatorcontrib><creatorcontrib>Avdeev, Victor Vasil'evich</creatorcontrib><creatorcontrib>Morozov, Oleg Sergeevich</creatorcontrib><creatorcontrib>Bulgakov, Boris Anatol'evich</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobanova, Marina Sergeevna</au><au>Babkin, Alexandr Vladimirovich</au><au>Kepman, Alexey Valeryevich</au><au>Avdeev, Victor Vasil'evich</au><au>Morozov, Oleg Sergeevich</au><au>Bulgakov, Boris Anatol'evich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Phosphate-Bridged Monomer on Thermal Oxidative Behavior of Phthalonitrile Thermosets</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-08-07</date><risdate>2024</risdate><volume>16</volume><issue>16</issue><spage>2239</spage><pages>2239-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Phthalonitrile thermosets are known for their excellent mechanical, physico-chemical, and fire-retardant properties, making them attractive for aerospace and mechanical engineering applications. When producing and applying phthalonitrile-based structural parts, it is essential to consider aspects such as processability and the long-term stability of the material's properties at high temperatures. In our previous studies, we demonstrated that resins containing phosphate-bridged bisphthalonitrile monomers are easily processable due to their low melting temperature and wide processing window. In this study, we investigated the impact of bis(3-(3,4-dicyanophenoxy)phenyl)phenyl phosphate (PPhPN) monomer content on physico-chemical and mechanical properties, thermal stability, and thermal oxidative stability. This research highlights the importance of conducting long-term thermal oxidative aging studies in addition to thermogravimetric analysis to properly assess the stability of thermosets. The findings indicate that adding less than 15% of PPhPN results in the formation of a crystalline phase, which impairs the resin's processability. Conversely, a high PPhPN content reduces the material's thermal oxidative stability. Therefore, based on mechanical and physico-chemical tests after thermal oxidative aging, it can be concluded that a 10-15% concentration of the phosphate-containing monomer enables easy processability of the phthalonitrile resin and provides excellent long-term thermal oxidative stability at temperatures up to 300 °C, while maintaining a flexural strength exceeding 120 MPa and an elasticity modulus of 4.3 GPa.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39204459</pmid><doi>10.3390/polym16162239</doi><orcidid>https://orcid.org/0000-0003-3852-1066</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2024-08, Vol.16 (16), p.2239
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11359510
source Open Access: PubMed Central; Publicly Available Content Database
subjects Aerospace engineering
Aging
Chemical tests
Crack propagation
Curing
Flame retardants
Flexural strength
Heat resistance
High temperature
Hydrocarbons
Mechanical engineering
Mechanical properties
Melt temperature
Monomers
Oxidation
Phosphorus
Polymers
Resins
Structural stability
Temperature
Thermal stability
Thermogravimetric analysis
title Effect of Phosphate-Bridged Monomer on Thermal Oxidative Behavior of Phthalonitrile Thermosets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Phosphate-Bridged%20Monomer%20on%20Thermal%20Oxidative%20Behavior%20of%20Phthalonitrile%20Thermosets&rft.jtitle=Polymers&rft.au=Lobanova,%20Marina%20Sergeevna&rft.date=2024-08-07&rft.volume=16&rft.issue=16&rft.spage=2239&rft.pages=2239-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16162239&rft_dat=%3Cproquest_pubme%3E3098185123%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-6d1da7aae526030093004242c1a365c26b517869a0a061933a2508c448ad7bd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098185123&rft_id=info:pmid/39204459&rfr_iscdi=true