Loading…

Influence of NR/MWCNT Blending on Rotor Metal Friction and Wear during Mixing Process

Mixing involves blending raw rubber or masticated rubber with additives using a rubber mixer, which is the most critical process in rubber production. The internal mixer, as the most important mixing equipment, experiences rotor wear during prolonged operation, affecting the gap between the mixer ro...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2024-08, Vol.16 (16), p.2294
Main Authors: Han, Deshang, Zhang, Quanzhong, Zhao, Weifu, Liu, Changxia, Wang, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mixing involves blending raw rubber or masticated rubber with additives using a rubber mixer, which is the most critical process in rubber production. The internal mixer, as the most important mixing equipment, experiences rotor wear during prolonged operation, affecting the gap between the mixer rotor and the chamber wall. This wear reduces mixing effectiveness, weakens filler dispersion, and ultimately impacts rubber performance. In recent years, as research on multi-walled carbon nanotubes (MWCNTs) and nanomaterials has deepened, their broad application prospects have become increasingly apparent. The objective of the present study is to understand and quantify rotor wear in rubber blends during the mixing process as influenced by multi-walled carbon nanotubes. This study found that with the increase in MWCNT content, the proportion of abrasive wear rises, while the proportion of corrosive wear decreases, leading to reduced overall wear. Compared to rubber without MWCNTs, the Payne effect decreased by 6.78%, 9.57%, 13.03%, 20.48%, and 26.06% with the addition of 1 phr, 3 phr, 5 phr, 7 phr, and 9 phr of MWCNTs, respectively. The friction coefficients between the rubber and metal increased by 6.31%, 8.57%, 25.43%, 39.31%, and 47.61%, while the metal wear rate decreased by 9.08%, 10.73%, 13.41%, 17.46%, and 25%. Conversely, the friction coefficients were reduced by 19.39%, 22.42%, 33.94%, 66.06%, and 76.36%.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16162294