Loading…

Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model

Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three‐dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular and molecular medicine 2024-09, Vol.28 (17), p.e70040-n/a
Main Authors: Dousti, Maryam, Parsa, Shima, Sani, Farnaz, Bagherzadeh, Elham, Zamanzadeh, Zahra, Dara, Mahintaj, Sani, Mahsa, Azarpira, Negar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3380-b1f5d183fcb827629134a55b1f94f6ab46f4ade8038d6f96f9c6068c1efa06c63
container_end_page n/a
container_issue 17
container_start_page e70040
container_title Journal of cellular and molecular medicine
container_volume 28
creator Dousti, Maryam
Parsa, Shima
Sani, Farnaz
Bagherzadeh, Elham
Zamanzadeh, Zahra
Dara, Mahintaj
Sani, Mahsa
Azarpira, Negar
description Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three‐dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super‐paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co‐culture of Human umbilical vein endothelial cells (HUVEC) and MG‐63 cells as a model of bone microtissue. HUVECs: MG‐63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 μg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis‐related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen‐I, as well as the expression of the angiogenesis‐related marker, CD‐31, and the tube formation, is significantly elevated when the 50 μg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co‐culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior‐performance implants, preventing device failure.
doi_str_mv 10.1111/jcmm.70040
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11366680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103751251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3380-b1f5d183fcb827629134a55b1f94f6ab46f4ade8038d6f96f9c6068c1efa06c63</originalsourceid><addsrcrecordid>eNp9kU-PFCEQxYnRuOvoxQ9gSLwYk1mh6WbAy8ZM1n_ZjRf3TKrpYoYJDSN0a_bbyzjjRj1ISKhQv7x68Ah5ztkFr-vNzo7jxYqxlj0g57xTzbLVon14qrkS6ow8KWXHmJBc6MfkTOiGa9awc-Ku4hai9XFD-xSRZtxgxAyTT_EtvY0BoWwP3WmLdJ8mjJOHQJOjI2wiTt7SCDHtIdcyYKE-UqCjtzlNvpQZ6ZgGDE_JIweh4LPTuSC376--rj8ur798-LR-d720Qii27LnrhmrY2V41K9loLlrounqtWyehb6VrYUDFhBqk03VbyaSyHB0waaVYkMuj7n7uRxxstZshmH32I-Q7k8CbvzvRb80mfTecCyllFV6QVyeFnL7NWCYz-mIxBIiY5mIE01p1q649DHv5D7pLc471fUZwJlYdbzpeqddHqn5JKRndvRvOzCE_c8jP_Mqvwi_-9H-P_g6sAvwI_PAB7_4jZT6vb26Ooj8Bz8CnaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103751251</pqid></control><display><type>article</type><title>Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Dousti, Maryam ; Parsa, Shima ; Sani, Farnaz ; Bagherzadeh, Elham ; Zamanzadeh, Zahra ; Dara, Mahintaj ; Sani, Mahsa ; Azarpira, Negar</creator><creatorcontrib>Dousti, Maryam ; Parsa, Shima ; Sani, Farnaz ; Bagherzadeh, Elham ; Zamanzadeh, Zahra ; Dara, Mahintaj ; Sani, Mahsa ; Azarpira, Negar</creatorcontrib><description>Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three‐dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super‐paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co‐culture of Human umbilical vein endothelial cells (HUVEC) and MG‐63 cells as a model of bone microtissue. HUVECs: MG‐63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 μg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis‐related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen‐I, as well as the expression of the angiogenesis‐related marker, CD‐31, and the tube formation, is significantly elevated when the 50 μg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co‐culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior‐performance implants, preventing device failure.</description><identifier>ISSN: 1582-1838</identifier><identifier>ISSN: 1582-4934</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.70040</identifier><identifier>PMID: 39219020</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Alkaline phosphatase ; Allografts ; Angiogenesis ; Biocompatibility ; Blood vessels ; Bone diseases ; Bone grafts ; Bone growth ; Bone implants ; Bone Regeneration - drug effects ; Bones ; Cell adhesion &amp; migration ; Cell culture ; Cell Differentiation - drug effects ; Cell migration ; Cell Movement - drug effects ; Cell Survival - drug effects ; Coculture Techniques ; Disease transmission ; Electron microscopes ; Endothelial cells ; Fe3O4 ; Gene expression ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; Intracellular signalling ; Iron ; Iron oxides ; Magnetic Iron Oxide Nanoparticles - chemistry ; magnetic nanoparticle ; Magnetite Nanoparticles - chemistry ; Microscopy ; microtissue ; Mineralization ; Nanoparticles ; Neovascularization, Physiologic - drug effects ; Original ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteocalcin ; Osteogenesis ; Osteogenesis - drug effects ; Osteopontin ; Penicillin ; Phosphatase ; Physiology ; Regeneration ; Stains &amp; staining ; Tissue engineering ; Tissue Engineering - methods ; Toxicity ; Umbilical vein</subject><ispartof>Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e70040-n/a</ispartof><rights>2024 The Author(s). published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2024 The Author(s). Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3380-b1f5d183fcb827629134a55b1f94f6ab46f4ade8038d6f96f9c6068c1efa06c63</cites><orcidid>0000-0002-0379-6572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3103751251/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3103751251?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39219020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dousti, Maryam</creatorcontrib><creatorcontrib>Parsa, Shima</creatorcontrib><creatorcontrib>Sani, Farnaz</creatorcontrib><creatorcontrib>Bagherzadeh, Elham</creatorcontrib><creatorcontrib>Zamanzadeh, Zahra</creatorcontrib><creatorcontrib>Dara, Mahintaj</creatorcontrib><creatorcontrib>Sani, Mahsa</creatorcontrib><creatorcontrib>Azarpira, Negar</creatorcontrib><title>Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three‐dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super‐paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co‐culture of Human umbilical vein endothelial cells (HUVEC) and MG‐63 cells as a model of bone microtissue. HUVECs: MG‐63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 μg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis‐related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen‐I, as well as the expression of the angiogenesis‐related marker, CD‐31, and the tube formation, is significantly elevated when the 50 μg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co‐culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior‐performance implants, preventing device failure.</description><subject>Alkaline phosphatase</subject><subject>Allografts</subject><subject>Angiogenesis</subject><subject>Biocompatibility</subject><subject>Blood vessels</subject><subject>Bone diseases</subject><subject>Bone grafts</subject><subject>Bone growth</subject><subject>Bone implants</subject><subject>Bone Regeneration - drug effects</subject><subject>Bones</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell culture</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell migration</subject><subject>Cell Movement - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Coculture Techniques</subject><subject>Disease transmission</subject><subject>Electron microscopes</subject><subject>Endothelial cells</subject><subject>Fe3O4</subject><subject>Gene expression</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Intracellular signalling</subject><subject>Iron</subject><subject>Iron oxides</subject><subject>Magnetic Iron Oxide Nanoparticles - chemistry</subject><subject>magnetic nanoparticle</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Microscopy</subject><subject>microtissue</subject><subject>Mineralization</subject><subject>Nanoparticles</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Original</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteocalcin</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Osteopontin</subject><subject>Penicillin</subject><subject>Phosphatase</subject><subject>Physiology</subject><subject>Regeneration</subject><subject>Stains &amp; staining</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Toxicity</subject><subject>Umbilical vein</subject><issn>1582-1838</issn><issn>1582-4934</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kU-PFCEQxYnRuOvoxQ9gSLwYk1mh6WbAy8ZM1n_ZjRf3TKrpYoYJDSN0a_bbyzjjRj1ISKhQv7x68Ah5ztkFr-vNzo7jxYqxlj0g57xTzbLVon14qrkS6ow8KWXHmJBc6MfkTOiGa9awc-Ku4hai9XFD-xSRZtxgxAyTT_EtvY0BoWwP3WmLdJ8mjJOHQJOjI2wiTt7SCDHtIdcyYKE-UqCjtzlNvpQZ6ZgGDE_JIweh4LPTuSC376--rj8ur798-LR-d720Qii27LnrhmrY2V41K9loLlrounqtWyehb6VrYUDFhBqk03VbyaSyHB0waaVYkMuj7n7uRxxstZshmH32I-Q7k8CbvzvRb80mfTecCyllFV6QVyeFnL7NWCYz-mIxBIiY5mIE01p1q649DHv5D7pLc471fUZwJlYdbzpeqddHqn5JKRndvRvOzCE_c8jP_Mqvwi_-9H-P_g6sAvwI_PAB7_4jZT6vb26Ooj8Bz8CnaA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Dousti, Maryam</creator><creator>Parsa, Shima</creator><creator>Sani, Farnaz</creator><creator>Bagherzadeh, Elham</creator><creator>Zamanzadeh, Zahra</creator><creator>Dara, Mahintaj</creator><creator>Sani, Mahsa</creator><creator>Azarpira, Negar</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0379-6572</orcidid></search><sort><creationdate>202409</creationdate><title>Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model</title><author>Dousti, Maryam ; Parsa, Shima ; Sani, Farnaz ; Bagherzadeh, Elham ; Zamanzadeh, Zahra ; Dara, Mahintaj ; Sani, Mahsa ; Azarpira, Negar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3380-b1f5d183fcb827629134a55b1f94f6ab46f4ade8038d6f96f9c6068c1efa06c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkaline phosphatase</topic><topic>Allografts</topic><topic>Angiogenesis</topic><topic>Biocompatibility</topic><topic>Blood vessels</topic><topic>Bone diseases</topic><topic>Bone grafts</topic><topic>Bone growth</topic><topic>Bone implants</topic><topic>Bone Regeneration - drug effects</topic><topic>Bones</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell culture</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell migration</topic><topic>Cell Movement - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Coculture Techniques</topic><topic>Disease transmission</topic><topic>Electron microscopes</topic><topic>Endothelial cells</topic><topic>Fe3O4</topic><topic>Gene expression</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Intracellular signalling</topic><topic>Iron</topic><topic>Iron oxides</topic><topic>Magnetic Iron Oxide Nanoparticles - chemistry</topic><topic>magnetic nanoparticle</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Microscopy</topic><topic>microtissue</topic><topic>Mineralization</topic><topic>Nanoparticles</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Original</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteocalcin</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Osteopontin</topic><topic>Penicillin</topic><topic>Phosphatase</topic><topic>Physiology</topic><topic>Regeneration</topic><topic>Stains &amp; staining</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Toxicity</topic><topic>Umbilical vein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dousti, Maryam</creatorcontrib><creatorcontrib>Parsa, Shima</creatorcontrib><creatorcontrib>Sani, Farnaz</creatorcontrib><creatorcontrib>Bagherzadeh, Elham</creatorcontrib><creatorcontrib>Zamanzadeh, Zahra</creatorcontrib><creatorcontrib>Dara, Mahintaj</creatorcontrib><creatorcontrib>Sani, Mahsa</creatorcontrib><creatorcontrib>Azarpira, Negar</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dousti, Maryam</au><au>Parsa, Shima</au><au>Sani, Farnaz</au><au>Bagherzadeh, Elham</au><au>Zamanzadeh, Zahra</au><au>Dara, Mahintaj</au><au>Sani, Mahsa</au><au>Azarpira, Negar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2024-09</date><risdate>2024</risdate><volume>28</volume><issue>17</issue><spage>e70040</spage><epage>n/a</epage><pages>e70040-n/a</pages><issn>1582-1838</issn><issn>1582-4934</issn><eissn>1582-4934</eissn><abstract>Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three‐dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super‐paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co‐culture of Human umbilical vein endothelial cells (HUVEC) and MG‐63 cells as a model of bone microtissue. HUVECs: MG‐63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 μg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis‐related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen‐I, as well as the expression of the angiogenesis‐related marker, CD‐31, and the tube formation, is significantly elevated when the 50 μg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co‐culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior‐performance implants, preventing device failure.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39219020</pmid><doi>10.1111/jcmm.70040</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0379-6572</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e70040-n/a
issn 1582-1838
1582-4934
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11366680
source Wiley Online Library Open Access; Publicly Available Content Database; PubMed Central
subjects Alkaline phosphatase
Allografts
Angiogenesis
Biocompatibility
Blood vessels
Bone diseases
Bone grafts
Bone growth
Bone implants
Bone Regeneration - drug effects
Bones
Cell adhesion & migration
Cell culture
Cell Differentiation - drug effects
Cell migration
Cell Movement - drug effects
Cell Survival - drug effects
Coculture Techniques
Disease transmission
Electron microscopes
Endothelial cells
Fe3O4
Gene expression
Human Umbilical Vein Endothelial Cells - metabolism
Humans
Intracellular signalling
Iron
Iron oxides
Magnetic Iron Oxide Nanoparticles - chemistry
magnetic nanoparticle
Magnetite Nanoparticles - chemistry
Microscopy
microtissue
Mineralization
Nanoparticles
Neovascularization, Physiologic - drug effects
Original
Osteoblasts - cytology
Osteoblasts - drug effects
Osteoblasts - metabolism
Osteocalcin
Osteogenesis
Osteogenesis - drug effects
Osteopontin
Penicillin
Phosphatase
Physiology
Regeneration
Stains & staining
Tissue engineering
Tissue Engineering - methods
Toxicity
Umbilical vein
title Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20bone%20regeneration:%20Unleashing%20the%20potential%20of%20magnetic%20nanoparticles%20in%20a%20microtissue%20model&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Dousti,%20Maryam&rft.date=2024-09&rft.volume=28&rft.issue=17&rft.spage=e70040&rft.epage=n/a&rft.pages=e70040-n/a&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.70040&rft_dat=%3Cproquest_pubme%3E3103751251%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3380-b1f5d183fcb827629134a55b1f94f6ab46f4ade8038d6f96f9c6068c1efa06c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103751251&rft_id=info:pmid/39219020&rfr_iscdi=true