Loading…
Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model
Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three‐dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover,...
Saved in:
Published in: | Journal of cellular and molecular medicine 2024-09, Vol.28 (17), p.e70040-n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3380-b1f5d183fcb827629134a55b1f94f6ab46f4ade8038d6f96f9c6068c1efa06c63 |
container_end_page | n/a |
container_issue | 17 |
container_start_page | e70040 |
container_title | Journal of cellular and molecular medicine |
container_volume | 28 |
creator | Dousti, Maryam Parsa, Shima Sani, Farnaz Bagherzadeh, Elham Zamanzadeh, Zahra Dara, Mahintaj Sani, Mahsa Azarpira, Negar |
description | Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three‐dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super‐paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co‐culture of Human umbilical vein endothelial cells (HUVEC) and MG‐63 cells as a model of bone microtissue. HUVECs: MG‐63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 μg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis‐related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen‐I, as well as the expression of the angiogenesis‐related marker, CD‐31, and the tube formation, is significantly elevated when the 50 μg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co‐culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior‐performance implants, preventing device failure. |
doi_str_mv | 10.1111/jcmm.70040 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11366680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103751251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3380-b1f5d183fcb827629134a55b1f94f6ab46f4ade8038d6f96f9c6068c1efa06c63</originalsourceid><addsrcrecordid>eNp9kU-PFCEQxYnRuOvoxQ9gSLwYk1mh6WbAy8ZM1n_ZjRf3TKrpYoYJDSN0a_bbyzjjRj1ISKhQv7x68Ah5ztkFr-vNzo7jxYqxlj0g57xTzbLVon14qrkS6ow8KWXHmJBc6MfkTOiGa9awc-Ku4hai9XFD-xSRZtxgxAyTT_EtvY0BoWwP3WmLdJ8mjJOHQJOjI2wiTt7SCDHtIdcyYKE-UqCjtzlNvpQZ6ZgGDE_JIweh4LPTuSC376--rj8ur798-LR-d720Qii27LnrhmrY2V41K9loLlrounqtWyehb6VrYUDFhBqk03VbyaSyHB0waaVYkMuj7n7uRxxstZshmH32I-Q7k8CbvzvRb80mfTecCyllFV6QVyeFnL7NWCYz-mIxBIiY5mIE01p1q649DHv5D7pLc471fUZwJlYdbzpeqddHqn5JKRndvRvOzCE_c8jP_Mqvwi_-9H-P_g6sAvwI_PAB7_4jZT6vb26Ooj8Bz8CnaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103751251</pqid></control><display><type>article</type><title>Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Dousti, Maryam ; Parsa, Shima ; Sani, Farnaz ; Bagherzadeh, Elham ; Zamanzadeh, Zahra ; Dara, Mahintaj ; Sani, Mahsa ; Azarpira, Negar</creator><creatorcontrib>Dousti, Maryam ; Parsa, Shima ; Sani, Farnaz ; Bagherzadeh, Elham ; Zamanzadeh, Zahra ; Dara, Mahintaj ; Sani, Mahsa ; Azarpira, Negar</creatorcontrib><description>Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three‐dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super‐paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co‐culture of Human umbilical vein endothelial cells (HUVEC) and MG‐63 cells as a model of bone microtissue. HUVECs: MG‐63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 μg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis‐related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen‐I, as well as the expression of the angiogenesis‐related marker, CD‐31, and the tube formation, is significantly elevated when the 50 μg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co‐culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior‐performance implants, preventing device failure.</description><identifier>ISSN: 1582-1838</identifier><identifier>ISSN: 1582-4934</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.70040</identifier><identifier>PMID: 39219020</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Alkaline phosphatase ; Allografts ; Angiogenesis ; Biocompatibility ; Blood vessels ; Bone diseases ; Bone grafts ; Bone growth ; Bone implants ; Bone Regeneration - drug effects ; Bones ; Cell adhesion & migration ; Cell culture ; Cell Differentiation - drug effects ; Cell migration ; Cell Movement - drug effects ; Cell Survival - drug effects ; Coculture Techniques ; Disease transmission ; Electron microscopes ; Endothelial cells ; Fe3O4 ; Gene expression ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; Intracellular signalling ; Iron ; Iron oxides ; Magnetic Iron Oxide Nanoparticles - chemistry ; magnetic nanoparticle ; Magnetite Nanoparticles - chemistry ; Microscopy ; microtissue ; Mineralization ; Nanoparticles ; Neovascularization, Physiologic - drug effects ; Original ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteocalcin ; Osteogenesis ; Osteogenesis - drug effects ; Osteopontin ; Penicillin ; Phosphatase ; Physiology ; Regeneration ; Stains & staining ; Tissue engineering ; Tissue Engineering - methods ; Toxicity ; Umbilical vein</subject><ispartof>Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e70040-n/a</ispartof><rights>2024 The Author(s). published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2024 The Author(s). Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3380-b1f5d183fcb827629134a55b1f94f6ab46f4ade8038d6f96f9c6068c1efa06c63</cites><orcidid>0000-0002-0379-6572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3103751251/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3103751251?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39219020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dousti, Maryam</creatorcontrib><creatorcontrib>Parsa, Shima</creatorcontrib><creatorcontrib>Sani, Farnaz</creatorcontrib><creatorcontrib>Bagherzadeh, Elham</creatorcontrib><creatorcontrib>Zamanzadeh, Zahra</creatorcontrib><creatorcontrib>Dara, Mahintaj</creatorcontrib><creatorcontrib>Sani, Mahsa</creatorcontrib><creatorcontrib>Azarpira, Negar</creatorcontrib><title>Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three‐dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super‐paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co‐culture of Human umbilical vein endothelial cells (HUVEC) and MG‐63 cells as a model of bone microtissue. HUVECs: MG‐63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 μg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis‐related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen‐I, as well as the expression of the angiogenesis‐related marker, CD‐31, and the tube formation, is significantly elevated when the 50 μg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co‐culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior‐performance implants, preventing device failure.</description><subject>Alkaline phosphatase</subject><subject>Allografts</subject><subject>Angiogenesis</subject><subject>Biocompatibility</subject><subject>Blood vessels</subject><subject>Bone diseases</subject><subject>Bone grafts</subject><subject>Bone growth</subject><subject>Bone implants</subject><subject>Bone Regeneration - drug effects</subject><subject>Bones</subject><subject>Cell adhesion & migration</subject><subject>Cell culture</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell migration</subject><subject>Cell Movement - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Coculture Techniques</subject><subject>Disease transmission</subject><subject>Electron microscopes</subject><subject>Endothelial cells</subject><subject>Fe3O4</subject><subject>Gene expression</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Intracellular signalling</subject><subject>Iron</subject><subject>Iron oxides</subject><subject>Magnetic Iron Oxide Nanoparticles - chemistry</subject><subject>magnetic nanoparticle</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Microscopy</subject><subject>microtissue</subject><subject>Mineralization</subject><subject>Nanoparticles</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Original</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteocalcin</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Osteopontin</subject><subject>Penicillin</subject><subject>Phosphatase</subject><subject>Physiology</subject><subject>Regeneration</subject><subject>Stains & staining</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Toxicity</subject><subject>Umbilical vein</subject><issn>1582-1838</issn><issn>1582-4934</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kU-PFCEQxYnRuOvoxQ9gSLwYk1mh6WbAy8ZM1n_ZjRf3TKrpYoYJDSN0a_bbyzjjRj1ISKhQv7x68Ah5ztkFr-vNzo7jxYqxlj0g57xTzbLVon14qrkS6ow8KWXHmJBc6MfkTOiGa9awc-Ku4hai9XFD-xSRZtxgxAyTT_EtvY0BoWwP3WmLdJ8mjJOHQJOjI2wiTt7SCDHtIdcyYKE-UqCjtzlNvpQZ6ZgGDE_JIweh4LPTuSC376--rj8ur798-LR-d720Qii27LnrhmrY2V41K9loLlrounqtWyehb6VrYUDFhBqk03VbyaSyHB0waaVYkMuj7n7uRxxstZshmH32I-Q7k8CbvzvRb80mfTecCyllFV6QVyeFnL7NWCYz-mIxBIiY5mIE01p1q649DHv5D7pLc471fUZwJlYdbzpeqddHqn5JKRndvRvOzCE_c8jP_Mqvwi_-9H-P_g6sAvwI_PAB7_4jZT6vb26Ooj8Bz8CnaA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Dousti, Maryam</creator><creator>Parsa, Shima</creator><creator>Sani, Farnaz</creator><creator>Bagherzadeh, Elham</creator><creator>Zamanzadeh, Zahra</creator><creator>Dara, Mahintaj</creator><creator>Sani, Mahsa</creator><creator>Azarpira, Negar</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0379-6572</orcidid></search><sort><creationdate>202409</creationdate><title>Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model</title><author>Dousti, Maryam ; Parsa, Shima ; Sani, Farnaz ; Bagherzadeh, Elham ; Zamanzadeh, Zahra ; Dara, Mahintaj ; Sani, Mahsa ; Azarpira, Negar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3380-b1f5d183fcb827629134a55b1f94f6ab46f4ade8038d6f96f9c6068c1efa06c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkaline phosphatase</topic><topic>Allografts</topic><topic>Angiogenesis</topic><topic>Biocompatibility</topic><topic>Blood vessels</topic><topic>Bone diseases</topic><topic>Bone grafts</topic><topic>Bone growth</topic><topic>Bone implants</topic><topic>Bone Regeneration - drug effects</topic><topic>Bones</topic><topic>Cell adhesion & migration</topic><topic>Cell culture</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell migration</topic><topic>Cell Movement - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Coculture Techniques</topic><topic>Disease transmission</topic><topic>Electron microscopes</topic><topic>Endothelial cells</topic><topic>Fe3O4</topic><topic>Gene expression</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Intracellular signalling</topic><topic>Iron</topic><topic>Iron oxides</topic><topic>Magnetic Iron Oxide Nanoparticles - chemistry</topic><topic>magnetic nanoparticle</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Microscopy</topic><topic>microtissue</topic><topic>Mineralization</topic><topic>Nanoparticles</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Original</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteocalcin</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Osteopontin</topic><topic>Penicillin</topic><topic>Phosphatase</topic><topic>Physiology</topic><topic>Regeneration</topic><topic>Stains & staining</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Toxicity</topic><topic>Umbilical vein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dousti, Maryam</creatorcontrib><creatorcontrib>Parsa, Shima</creatorcontrib><creatorcontrib>Sani, Farnaz</creatorcontrib><creatorcontrib>Bagherzadeh, Elham</creatorcontrib><creatorcontrib>Zamanzadeh, Zahra</creatorcontrib><creatorcontrib>Dara, Mahintaj</creatorcontrib><creatorcontrib>Sani, Mahsa</creatorcontrib><creatorcontrib>Azarpira, Negar</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dousti, Maryam</au><au>Parsa, Shima</au><au>Sani, Farnaz</au><au>Bagherzadeh, Elham</au><au>Zamanzadeh, Zahra</au><au>Dara, Mahintaj</au><au>Sani, Mahsa</au><au>Azarpira, Negar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2024-09</date><risdate>2024</risdate><volume>28</volume><issue>17</issue><spage>e70040</spage><epage>n/a</epage><pages>e70040-n/a</pages><issn>1582-1838</issn><issn>1582-4934</issn><eissn>1582-4934</eissn><abstract>Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three‐dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super‐paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co‐culture of Human umbilical vein endothelial cells (HUVEC) and MG‐63 cells as a model of bone microtissue. HUVECs: MG‐63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 μg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis‐related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen‐I, as well as the expression of the angiogenesis‐related marker, CD‐31, and the tube formation, is significantly elevated when the 50 μg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co‐culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior‐performance implants, preventing device failure.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>39219020</pmid><doi>10.1111/jcmm.70040</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0379-6572</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e70040-n/a |
issn | 1582-1838 1582-4934 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11366680 |
source | Wiley Online Library Open Access; Publicly Available Content Database; PubMed Central |
subjects | Alkaline phosphatase Allografts Angiogenesis Biocompatibility Blood vessels Bone diseases Bone grafts Bone growth Bone implants Bone Regeneration - drug effects Bones Cell adhesion & migration Cell culture Cell Differentiation - drug effects Cell migration Cell Movement - drug effects Cell Survival - drug effects Coculture Techniques Disease transmission Electron microscopes Endothelial cells Fe3O4 Gene expression Human Umbilical Vein Endothelial Cells - metabolism Humans Intracellular signalling Iron Iron oxides Magnetic Iron Oxide Nanoparticles - chemistry magnetic nanoparticle Magnetite Nanoparticles - chemistry Microscopy microtissue Mineralization Nanoparticles Neovascularization, Physiologic - drug effects Original Osteoblasts - cytology Osteoblasts - drug effects Osteoblasts - metabolism Osteocalcin Osteogenesis Osteogenesis - drug effects Osteopontin Penicillin Phosphatase Physiology Regeneration Stains & staining Tissue engineering Tissue Engineering - methods Toxicity Umbilical vein |
title | Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20bone%20regeneration:%20Unleashing%20the%20potential%20of%20magnetic%20nanoparticles%20in%20a%20microtissue%20model&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Dousti,%20Maryam&rft.date=2024-09&rft.volume=28&rft.issue=17&rft.spage=e70040&rft.epage=n/a&rft.pages=e70040-n/a&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.70040&rft_dat=%3Cproquest_pubme%3E3103751251%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3380-b1f5d183fcb827629134a55b1f94f6ab46f4ade8038d6f96f9c6068c1efa06c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103751251&rft_id=info:pmid/39219020&rfr_iscdi=true |