Loading…

CIBRA identifies genomic alterations with a system-wide impact on tumor biology

Abstract Motivation Genomic instability is a hallmark of cancer, leading to many somatic alterations. Identifying which alterations have a system-wide impact is a challenging task. Nevertheless, this is an essential first step for prioritizing potential biomarkers. We developed CIBRA (Computational...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) England), 2024-09, Vol.40 (Supplement_2), p.ii37-ii44
Main Authors: Lakbir, Soufyan, Buranelli, Caterina, Meijer, Gerrit A, Heringa, Jaap, Fijneman, Remond J A, Abeln, Sanne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c362t-2c78021fc976f720ff4d7a9acdc749460393bc093d815d5f31796a94854244c03
container_end_page ii44
container_issue Supplement_2
container_start_page ii37
container_title Bioinformatics (Oxford, England)
container_volume 40
creator Lakbir, Soufyan
Buranelli, Caterina
Meijer, Gerrit A
Heringa, Jaap
Fijneman, Remond J A
Abeln, Sanne
description Abstract Motivation Genomic instability is a hallmark of cancer, leading to many somatic alterations. Identifying which alterations have a system-wide impact is a challenging task. Nevertheless, this is an essential first step for prioritizing potential biomarkers. We developed CIBRA (Computational Identification of Biologically Relevant Alterations), a method that determines the system-wide impact of genomic alterations on tumor biology by integrating two distinct omics data types: one indicating genomic alterations (e.g. genomics), and another defining a system-wide expression response (e.g. transcriptomics). CIBRA was evaluated with genome-wide screens in 33 cancer types using primary and metastatic cancer data from the Cancer Genome Atlas and Hartwig Medical Foundation. Results We demonstrate the capability of CIBRA by successfully confirming the impact of point mutations in experimentally validated oncogenes and tumor suppressor genes (0.79 AUC). Surprisingly, many genes affected by structural variants were identified to have a strong system-wide impact (30.3%), suggesting that their role in cancer development has thus far been largely under-reported. Additionally, CIBRA can identify impact with only 10 cases and controls, providing a novel way to prioritize genomic alterations with a prominent role in cancer biology. Our findings demonstrate that CIBRA can identify cancer drivers by combining genomics and transcriptomics data. Moreover, our work shows an unexpected substantial system-wide impact of structural variants in cancer. Hence, CIBRA has the potential to preselect and refine current definitions of genomic alterations to derive more nuanced biomarkers for diagnostics, disease progression, and treatment response. Availability and implementation The R package CIBRA is available at https://github.com/AIT4LIFE-UU/CIBRA.
doi_str_mv 10.1093/bioinformatics/btae384
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11373315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btae384</oup_id><sourcerecordid>3124438914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-2c78021fc976f720ff4d7a9acdc749460393bc093d815d5f31796a94854244c03</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMovv-CBNy4qSa9adOsRAdfIAii65BJkzHSNmOSKvPvjcw4qCtXN3C_ezgnB6EjSk4pEXA2dd4N1odeJafj2TQpAw3bQLsUal6whtLN9ZvADtqL8ZUQUpGq3kY7IEognLBd9DC5u3y8wK41Q3LWmYhnZvC901h1yYSs7oeIP1x6wQrHRUymLz4yjV0_VzphP-A09j7gbKjzs8UB2rKqi-ZwNffR8_XV0-S2uH-4uZtc3Bca6jIVpeYNKanVgteWl8Ra1nIllG41Z4LVBARMdQ7aNrRqKwuUi1oJ1lSsZEwT2EfnS935OO1Nq7P9oDo5D65XYSG9cvL3ZnAvcubfJaXAAWiVFU5WCsG_jSYm2buoTdepwfgxSqD5u-oKmiajx3_QVz-GIefLVPYDjaAsU_WS0sHHGIxdu6FEfpUmf5cmV6Xlw6OfWdZn3y1lgC4BP87_K_oJi0GqYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124438914</pqid></control><display><type>article</type><title>CIBRA identifies genomic alterations with a system-wide impact on tumor biology</title><source>Oxford Open</source><source>PubMed Central</source><creator>Lakbir, Soufyan ; Buranelli, Caterina ; Meijer, Gerrit A ; Heringa, Jaap ; Fijneman, Remond J A ; Abeln, Sanne</creator><creatorcontrib>Lakbir, Soufyan ; Buranelli, Caterina ; Meijer, Gerrit A ; Heringa, Jaap ; Fijneman, Remond J A ; Abeln, Sanne</creatorcontrib><description>Abstract Motivation Genomic instability is a hallmark of cancer, leading to many somatic alterations. Identifying which alterations have a system-wide impact is a challenging task. Nevertheless, this is an essential first step for prioritizing potential biomarkers. We developed CIBRA (Computational Identification of Biologically Relevant Alterations), a method that determines the system-wide impact of genomic alterations on tumor biology by integrating two distinct omics data types: one indicating genomic alterations (e.g. genomics), and another defining a system-wide expression response (e.g. transcriptomics). CIBRA was evaluated with genome-wide screens in 33 cancer types using primary and metastatic cancer data from the Cancer Genome Atlas and Hartwig Medical Foundation. Results We demonstrate the capability of CIBRA by successfully confirming the impact of point mutations in experimentally validated oncogenes and tumor suppressor genes (0.79 AUC). Surprisingly, many genes affected by structural variants were identified to have a strong system-wide impact (30.3%), suggesting that their role in cancer development has thus far been largely under-reported. Additionally, CIBRA can identify impact with only 10 cases and controls, providing a novel way to prioritize genomic alterations with a prominent role in cancer biology. Our findings demonstrate that CIBRA can identify cancer drivers by combining genomics and transcriptomics data. Moreover, our work shows an unexpected substantial system-wide impact of structural variants in cancer. Hence, CIBRA has the potential to preselect and refine current definitions of genomic alterations to derive more nuanced biomarkers for diagnostics, disease progression, and treatment response. Availability and implementation The R package CIBRA is available at https://github.com/AIT4LIFE-UU/CIBRA.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btae384</identifier><identifier>PMID: 39230704</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Availability ; Biology ; Biomarkers ; Biomarkers, Tumor - genetics ; Cancer ; Computational Biology - methods ; Genes ; Genomes ; Genomic Instability ; Genomics ; Genomics - methods ; Humans ; Metastases ; Neoplasms - genetics ; Neoplasms - metabolism ; Oncogenes ; Point mutation ; Transcriptomics ; Tumor suppressor genes ; Tumors</subject><ispartof>Bioinformatics (Oxford, England), 2024-09, Vol.40 (Supplement_2), p.ii37-ii44</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-2c78021fc976f720ff4d7a9acdc749460393bc093d815d5f31796a94854244c03</cites><orcidid>0000-0002-8521-4408 ; 0000-0001-8641-4930 ; 0000-0002-2779-7174 ; 0009-0000-1329-3517 ; 0000-0003-2076-5521 ; 0000-0003-0330-3130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373315/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373315/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39230704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakbir, Soufyan</creatorcontrib><creatorcontrib>Buranelli, Caterina</creatorcontrib><creatorcontrib>Meijer, Gerrit A</creatorcontrib><creatorcontrib>Heringa, Jaap</creatorcontrib><creatorcontrib>Fijneman, Remond J A</creatorcontrib><creatorcontrib>Abeln, Sanne</creatorcontrib><title>CIBRA identifies genomic alterations with a system-wide impact on tumor biology</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Genomic instability is a hallmark of cancer, leading to many somatic alterations. Identifying which alterations have a system-wide impact is a challenging task. Nevertheless, this is an essential first step for prioritizing potential biomarkers. We developed CIBRA (Computational Identification of Biologically Relevant Alterations), a method that determines the system-wide impact of genomic alterations on tumor biology by integrating two distinct omics data types: one indicating genomic alterations (e.g. genomics), and another defining a system-wide expression response (e.g. transcriptomics). CIBRA was evaluated with genome-wide screens in 33 cancer types using primary and metastatic cancer data from the Cancer Genome Atlas and Hartwig Medical Foundation. Results We demonstrate the capability of CIBRA by successfully confirming the impact of point mutations in experimentally validated oncogenes and tumor suppressor genes (0.79 AUC). Surprisingly, many genes affected by structural variants were identified to have a strong system-wide impact (30.3%), suggesting that their role in cancer development has thus far been largely under-reported. Additionally, CIBRA can identify impact with only 10 cases and controls, providing a novel way to prioritize genomic alterations with a prominent role in cancer biology. Our findings demonstrate that CIBRA can identify cancer drivers by combining genomics and transcriptomics data. Moreover, our work shows an unexpected substantial system-wide impact of structural variants in cancer. Hence, CIBRA has the potential to preselect and refine current definitions of genomic alterations to derive more nuanced biomarkers for diagnostics, disease progression, and treatment response. Availability and implementation The R package CIBRA is available at https://github.com/AIT4LIFE-UU/CIBRA.</description><subject>Availability</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Cancer</subject><subject>Computational Biology - methods</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Metastases</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Oncogenes</subject><subject>Point mutation</subject><subject>Transcriptomics</subject><subject>Tumor suppressor genes</subject><subject>Tumors</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkUtLxDAUhYMovv-CBNy4qSa9adOsRAdfIAii65BJkzHSNmOSKvPvjcw4qCtXN3C_ezgnB6EjSk4pEXA2dd4N1odeJafj2TQpAw3bQLsUal6whtLN9ZvADtqL8ZUQUpGq3kY7IEognLBd9DC5u3y8wK41Q3LWmYhnZvC901h1yYSs7oeIP1x6wQrHRUymLz4yjV0_VzphP-A09j7gbKjzs8UB2rKqi-ZwNffR8_XV0-S2uH-4uZtc3Bca6jIVpeYNKanVgteWl8Ra1nIllG41Z4LVBARMdQ7aNrRqKwuUi1oJ1lSsZEwT2EfnS935OO1Nq7P9oDo5D65XYSG9cvL3ZnAvcubfJaXAAWiVFU5WCsG_jSYm2buoTdepwfgxSqD5u-oKmiajx3_QVz-GIefLVPYDjaAsU_WS0sHHGIxdu6FEfpUmf5cmV6Xlw6OfWdZn3y1lgC4BP87_K_oJi0GqYA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lakbir, Soufyan</creator><creator>Buranelli, Caterina</creator><creator>Meijer, Gerrit A</creator><creator>Heringa, Jaap</creator><creator>Fijneman, Remond J A</creator><creator>Abeln, Sanne</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8521-4408</orcidid><orcidid>https://orcid.org/0000-0001-8641-4930</orcidid><orcidid>https://orcid.org/0000-0002-2779-7174</orcidid><orcidid>https://orcid.org/0009-0000-1329-3517</orcidid><orcidid>https://orcid.org/0000-0003-2076-5521</orcidid><orcidid>https://orcid.org/0000-0003-0330-3130</orcidid></search><sort><creationdate>20240901</creationdate><title>CIBRA identifies genomic alterations with a system-wide impact on tumor biology</title><author>Lakbir, Soufyan ; Buranelli, Caterina ; Meijer, Gerrit A ; Heringa, Jaap ; Fijneman, Remond J A ; Abeln, Sanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-2c78021fc976f720ff4d7a9acdc749460393bc093d815d5f31796a94854244c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Availability</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Cancer</topic><topic>Computational Biology - methods</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Metastases</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Oncogenes</topic><topic>Point mutation</topic><topic>Transcriptomics</topic><topic>Tumor suppressor genes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakbir, Soufyan</creatorcontrib><creatorcontrib>Buranelli, Caterina</creatorcontrib><creatorcontrib>Meijer, Gerrit A</creatorcontrib><creatorcontrib>Heringa, Jaap</creatorcontrib><creatorcontrib>Fijneman, Remond J A</creatorcontrib><creatorcontrib>Abeln, Sanne</creatorcontrib><collection>Oxford Open</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakbir, Soufyan</au><au>Buranelli, Caterina</au><au>Meijer, Gerrit A</au><au>Heringa, Jaap</au><au>Fijneman, Remond J A</au><au>Abeln, Sanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CIBRA identifies genomic alterations with a system-wide impact on tumor biology</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>40</volume><issue>Supplement_2</issue><spage>ii37</spage><epage>ii44</epage><pages>ii37-ii44</pages><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation Genomic instability is a hallmark of cancer, leading to many somatic alterations. Identifying which alterations have a system-wide impact is a challenging task. Nevertheless, this is an essential first step for prioritizing potential biomarkers. We developed CIBRA (Computational Identification of Biologically Relevant Alterations), a method that determines the system-wide impact of genomic alterations on tumor biology by integrating two distinct omics data types: one indicating genomic alterations (e.g. genomics), and another defining a system-wide expression response (e.g. transcriptomics). CIBRA was evaluated with genome-wide screens in 33 cancer types using primary and metastatic cancer data from the Cancer Genome Atlas and Hartwig Medical Foundation. Results We demonstrate the capability of CIBRA by successfully confirming the impact of point mutations in experimentally validated oncogenes and tumor suppressor genes (0.79 AUC). Surprisingly, many genes affected by structural variants were identified to have a strong system-wide impact (30.3%), suggesting that their role in cancer development has thus far been largely under-reported. Additionally, CIBRA can identify impact with only 10 cases and controls, providing a novel way to prioritize genomic alterations with a prominent role in cancer biology. Our findings demonstrate that CIBRA can identify cancer drivers by combining genomics and transcriptomics data. Moreover, our work shows an unexpected substantial system-wide impact of structural variants in cancer. Hence, CIBRA has the potential to preselect and refine current definitions of genomic alterations to derive more nuanced biomarkers for diagnostics, disease progression, and treatment response. Availability and implementation The R package CIBRA is available at https://github.com/AIT4LIFE-UU/CIBRA.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39230704</pmid><doi>10.1093/bioinformatics/btae384</doi><orcidid>https://orcid.org/0000-0002-8521-4408</orcidid><orcidid>https://orcid.org/0000-0001-8641-4930</orcidid><orcidid>https://orcid.org/0000-0002-2779-7174</orcidid><orcidid>https://orcid.org/0009-0000-1329-3517</orcidid><orcidid>https://orcid.org/0000-0003-2076-5521</orcidid><orcidid>https://orcid.org/0000-0003-0330-3130</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2024-09, Vol.40 (Supplement_2), p.ii37-ii44
issn 1367-4803
1367-4811
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11373315
source Oxford Open; PubMed Central
subjects Availability
Biology
Biomarkers
Biomarkers, Tumor - genetics
Cancer
Computational Biology - methods
Genes
Genomes
Genomic Instability
Genomics
Genomics - methods
Humans
Metastases
Neoplasms - genetics
Neoplasms - metabolism
Oncogenes
Point mutation
Transcriptomics
Tumor suppressor genes
Tumors
title CIBRA identifies genomic alterations with a system-wide impact on tumor biology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CIBRA%20identifies%20genomic%20alterations%20with%20a%20system-wide%20impact%20on%20tumor%20biology&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Lakbir,%20Soufyan&rft.date=2024-09-01&rft.volume=40&rft.issue=Supplement_2&rft.spage=ii37&rft.epage=ii44&rft.pages=ii37-ii44&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btae384&rft_dat=%3Cproquest_pubme%3E3124438914%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-2c78021fc976f720ff4d7a9acdc749460393bc093d815d5f31796a94854244c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3124438914&rft_id=info:pmid/39230704&rft_oup_id=10.1093/bioinformatics/btae384&rfr_iscdi=true